Robust Mixture of Linear Regression Models

被引:20
作者
Bashir, Shaheena [1 ]
Carter, E. M. [2 ]
机构
[1] Aga Khan Univ, Dept Community Hlth Sci, Karachi, Pakistan
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
关键词
Biweight function; Emalgorithm; Mixture models; S-estimators; MAXIMUM-LIKELIHOOD;
D O I
10.1080/03610926.2011.558655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a robust model for parameter estimation when modeling in the presence of latent heterogeneity of population. Mixture of regression models are used for modeling when the data are a mixture of subgroups to allow for heterogeneity of the population. Parameter estimates from standard mixture of linear regression models are sensitive to atypical observations. To study mixtures of linear regression models, we introduce a class of robust estimators, called S-estimators. We investigate their breakdown point in mixture of linear regression models. It is expected that the robust S-estimators can achieve the high breakdown point in the contaminated data from the heterogenous populations. This model presents a unified, robust framework and parameter estimation is achieved via an expectation-conditional maximization (ECM) algorithm. This new family of robust mixture models is validated through Monte Carlo simulations. The application to real life data sets has shown that use of robust S-estimators in mixture of linear regression models accommodates the outliers producing stable estimates as compared to maximum likelihood estimators from mixture of linear regression models.
引用
收藏
页码:3371 / 3388
页数:18
相关论文
共 14 条
[1]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[2]   A MAXIMUM-LIKELIHOOD METHODOLOGY FOR CLUSTERWISE LINEAR-REGRESSION [J].
DESARBO, WS ;
CRON, WL .
JOURNAL OF CLASSIFICATION, 1988, 5 (02) :249-282
[3]  
Hosmer DW., 2000, Applied logistic regression, DOI DOI 10.1002/0471722146.CH4
[4]  
Huber P. J., 1981, Robust Statistics
[5]  
Leich F., 2008, 037 U MUN DEP STAT
[6]  
Leich F., 2004, J STAT SOFTW, V11, P8
[7]  
MCLACHLAN G, 2000, WILEY SER PROB STAT, P1, DOI 10.1002/0471721182
[8]  
McLachlan G., 1997, The EM Algorithm and Extensions
[9]  
Neykov N., 2004, P COMP STAT, P1585
[10]  
Pournelle G. H., 1953, Journal of Mammalogy, V34, P133, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO