Manipulating the Thermal Conductivity of Monolayer MoS2 via Lattice Defect and Strain Engineering

被引:176
作者
Ding, Zhiwei [1 ]
Pei, Qing-Xiang [1 ]
Jiang, Jin-Wu [2 ]
Zhang, Yong-Wei [1 ]
机构
[1] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[2] Shanghai Univ, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
关键词
MOLECULAR-DYNAMICS; PHOTOLUMINESCENCE; GRAPHENE; PHOTOTRANSISTORS; CONDUCTANCE; SCATTERING; TRANSPORT;
D O I
10.1021/acs.jpcc.5b03607
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monolayer molybdenum disulfide (MoS2), a new two-dimensional material beyond graphene, has attracted tremendous attention recently. Its applications in nanoelectronic and thermoelectric devices usually require manipulating the thermal transport properties. Using nonequilibrium molecular dynamics simulations, we investigated the effects of lattice defects and mechanical strain on the thermal conductivity of MoS2. We found that the thermal conductivity of monolayer MoS2 can be effectively tuned by introducing even a small amount of lattice defects. For example, a 0.5% concentration of mono-Mo vacancies is able to reduce the thermal conductivity by about 60%. Remarkably, the thermal conductivity of the defected sample can further be tuned by mechanical strain. For example, a 12% tensile strain is able to reduce the thermal conductivity by another 60%. We also found that the tensile strain exerts almost the same impact on the thermal conductivity of both pristine and defective MoS2, which signifies that there is no apparent coupling between defects and strain in affecting the thermal conductivity. Our analyses of the vibrational density of state and spectral energy density show that the underlying mechanisms for these drastic changes are (1) the reduction of the phonon relaxation time arising from phonon-defect scattering and (2) the reduction of the group velocity and heat capacity caused by tensile strain. Our findings here provide important insights and guidelines for the use of monolayer MoS2 in thermal management and thermoelectric devices.
引用
收藏
页码:16358 / 16365
页数:8
相关论文
共 69 条
[1]  
Alam M. T., 2014, NANOSC MICROSC THERM, V19, P1
[2]  
[Anonymous], 2014, NANOTECHNOLOGY
[3]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[4]   Effect of strain on the thermal conductivity of solids [J].
Bhowmick, Somnath ;
Shenoy, Vijay B. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
[5]   Large and Tunable Photothermoelectric Effect in Single-Layer MoS2 [J].
Buscema, Michele ;
Barkelid, Maria ;
Zwiller, Val ;
van der Zant, Herre S. J. ;
Steele, Gary A. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2013, 13 (02) :358-363
[6]   Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 [J].
Cai, Yongqing ;
Lan, Jinghua ;
Zhang, Gang ;
Zhang, Yong-Wei .
PHYSICAL REVIEW B, 2014, 89 (03)
[7]   Elastic Properties of Freely Suspended MoS2 Nanosheets [J].
Castellanos-Gomez, Andres ;
Poot, Menno ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Agrait, Nicolas ;
Rubio-Bollinger, Gabino .
ADVANCED MATERIALS, 2012, 24 (06) :772-775
[8]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[9]   Thermal conductivity degradation induced by point defects in irradiated silicon carbide [J].
Crocombette, Jean-Paul ;
Proville, Laurent .
APPLIED PHYSICS LETTERS, 2011, 98 (19)
[10]   In-plane and cross-plane thermal conductivities of molybdenum disulfide [J].
Ding, Zhiwei ;
Jiang, Jin-Wu ;
Pei, Qing-Xiang ;
Zhang, Yong-Wei .
NANOTECHNOLOGY, 2015, 26 (06)