Ground states of a nonlinear curl-curl problem in cylindrically symmetric media

被引:16
作者
Bartsch, Thomas [1 ]
Dohnal, Tomas [2 ]
Plum, Michael [3 ]
Reichel, Wolfgang [3 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Tech Univ Dortmund, Dept Math, D-44221 Dortmund, Germany
[3] Karlsruhe Inst Technol, Inst Anal, D-76128 Karlsruhe, Germany
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2016年 / 23卷 / 05期
关键词
Curl-curl problem; Maxwell's equation; Ground state; Variational methods; Symmetric subspace; Concentration compactness; HARMONIC MAXWELL EQUATIONS; SOLITONS; FIELD;
D O I
10.1007/s00030-016-0403-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear curl-curl problem del x del x U + V (x)U = Gamma(x)vertical bar U vertical bar(p-1) U in R-3 related to the Kerr nonlinear Maxwell equations for fully localized monochromatic fields. We search for solutions as minimizers (ground states) of the corresponding energy functional defined on subspaces (defocusing case) or natural constraints (focusing case) of H(curl; R-3). Under a cylindrical symmetry assumption corresponding to a photonic fiber geometry on the functions V and G the variational problem can be posed in a symmetric subspace of H(curl; R-3). For a defocusing case sup Gamma < 0 with large negative values of G at infinity we obtain ground states by the direct minimization method. For the focusing case inf Gamma > 0 the concentration compactness principle produces ground states under the assumption that zero lies outside the spectrum of the linear operator del x del x + V(x). Examples of cylindrically symmetric functions V are provided for which this holds.
引用
收藏
页数:34
相关论文
共 36 条
[1]  
Abramowitz M., 1964, National Bureau of Standards Applied Mathematics Series, DOI DOI 10.1119/1.15378
[2]   SELF-INDUCED TRANSPARENCY SOLITONS IN NONLINEAR REFRACTIVE PERIODIC MEDIA [J].
ACEVES, AB ;
WABNITZ, S .
PHYSICS LETTERS A, 1989, 141 (1-2) :37-42
[3]  
[Anonymous], 1993, OXFORD MATH MONOGR
[4]  
[Anonymous], 1978, METHODS MODERN MATH
[5]  
[Anonymous], 1988, MANIFOLDS TENSOR ANA, DOI DOI 10.1007/978-1-4612-1029-0
[6]  
[Anonymous], 1980, FUNCTIONAL ANAL
[7]  
[Anonymous], 1987, OXFORD MATH MONOGRAP
[8]  
Azzollini A., 2006, RIC MAT, V55, P123
[9]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[10]   Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium [J].
Bartsch, Thomas ;
Mederski, Jaroslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) :4304-4333