Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate

被引:48
作者
Chauhan, Veeren M. [1 ]
Hopper, Richard H. [2 ]
Ali, Syed Z. [2 ]
King, Emma M. [3 ]
Udrea, Florin [2 ,4 ]
Oxley, Chris H. [5 ]
Aylott, Jonathan W. [1 ]
机构
[1] Univ Nottingham, Sch Pharm, Lab Biophys & Surface Anal, Nottingham NG7 2RD, England
[2] Cambridge CMOS Sensors, Cambridge CB2 3BZ, England
[3] Univ Nottingham, Queens Med Ctr, Sch Biomed Sci, Adv Microscopy Unit, Nottingham NG7 2UH, England
[4] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
[5] De Montfort Univ, Fac Technol, Leicester LE1 9BH, Leics, England
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2014年 / 192卷
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
MEMS micro hotplate; Fluorescent; Temperature-sensitive; Nanosensor; Rhodamine B; Silica sol-gel; DYNAMIC-RANGE; HOT-STAGE; RESOLUTION; GROWTH; GEL; PH;
D O I
10.1016/j.snb.2013.10.042
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 degrees C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 degrees C to 145 degrees C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p<0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 44 条
[1]   Microelectromechanical system microhotplates for reliability testing of thin films and nanowires [J].
Aceros, Juan C. ;
McGruer, Nicol E. ;
Adams, George G. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (03) :918-926
[2]   Toxicity of Organic Fluorophores Used in Molecular Imaging: Literature Review [J].
Alford, Raphael ;
Simpson, Haley M. ;
Duberman, Josh ;
Hill, G. Craig ;
Ogawa, Mikako ;
Regino, Celeste ;
Kobayashi, Hisataka ;
Choyke, Peter L. .
MOLECULAR IMAGING, 2009, 8 (06) :341-354
[3]   Nanowire Hydrogen Gas Sensor Employing CMOS Micro-hotplate [J].
Ali, S. Z. ;
Santra, S. ;
Haneef, I. ;
Schwandt, C. ;
Kumar, R. V. ;
Milne, W. I. ;
Udrea, F. ;
Guha, P. K. ;
Covington, J. A. ;
Gardner, J. W. ;
Garofalo, V. .
2009 IEEE SENSORS, VOLS 1-3, 2009, :114-+
[4]  
Ali S. Z., 2007, ELECTROTHERMOMECHANI
[5]   Tungsten-Based SOI Microhotplates for Smart Gas Sensors [J].
Ali, Syed Z. ;
Udrea, Florin ;
Milne, William I. ;
Gardner, Julian W. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (06) :1408-1417
[6]   Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye [J].
Arata, Hideyuki F. ;
Low, Peter ;
Ishizuka, Koji ;
Bergaud, Christian ;
Kim, Beomjoon ;
Noji, Hiroyuki ;
Fujita, Hiroyuki .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) :339-345
[7]   Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy [J].
Baffou, G. ;
Kreuzer, M. P. ;
Kulzer, F. ;
Quidant, R. .
OPTICS EXPRESS, 2009, 17 (05) :3291-3298
[8]   Mapping Heat Origin in Plasmonic Structures [J].
Baffou, Guillaume ;
Girard, Christian ;
Quidant, Romain .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]   In situ high-temperature optical microscopy [J].
Boccaccini, AR ;
Hamann, B .
JOURNAL OF MATERIALS SCIENCE, 1999, 34 (22) :5419-5436
[10]   Mapping the Pharyngeal and Intestinal pH of Caenorhabditis elegans and Real-Time Luminal pH Oscillations Using Extended Dynamic Range pH-Sensitive Nanosensors [J].
Chauhan, Veeren M. ;
Orsi, Gianni ;
Brown, Alan ;
Pritchard, David I. ;
Aylott, Jonathan W. .
ACS NANO, 2013, 7 (06) :5577-5587