Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate

被引:47
作者
Chauhan, Veeren M. [1 ]
Hopper, Richard H. [2 ]
Ali, Syed Z. [2 ]
King, Emma M. [3 ]
Udrea, Florin [2 ,4 ]
Oxley, Chris H. [5 ]
Aylott, Jonathan W. [1 ]
机构
[1] Univ Nottingham, Sch Pharm, Lab Biophys & Surface Anal, Nottingham NG7 2RD, England
[2] Cambridge CMOS Sensors, Cambridge CB2 3BZ, England
[3] Univ Nottingham, Queens Med Ctr, Sch Biomed Sci, Adv Microscopy Unit, Nottingham NG7 2UH, England
[4] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
[5] De Montfort Univ, Fac Technol, Leicester LE1 9BH, Leics, England
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2014年 / 192卷
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
MEMS micro hotplate; Fluorescent; Temperature-sensitive; Nanosensor; Rhodamine B; Silica sol-gel; DYNAMIC-RANGE; HOT-STAGE; RESOLUTION; GROWTH; GEL; PH;
D O I
10.1016/j.snb.2013.10.042
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 degrees C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol-gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 degrees C to 145 degrees C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p<0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 44 条
  • [1] Microelectromechanical system microhotplates for reliability testing of thin films and nanowires
    Aceros, Juan C.
    McGruer, Nicol E.
    Adams, George G.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (03): : 918 - 926
  • [2] Toxicity of Organic Fluorophores Used in Molecular Imaging: Literature Review
    Alford, Raphael
    Simpson, Haley M.
    Duberman, Josh
    Hill, G. Craig
    Ogawa, Mikako
    Regino, Celeste
    Kobayashi, Hisataka
    Choyke, Peter L.
    [J]. MOLECULAR IMAGING, 2009, 8 (06) : 341 - 354
  • [3] Nanowire Hydrogen Gas Sensor Employing CMOS Micro-hotplate
    Ali, S. Z.
    Santra, S.
    Haneef, I.
    Schwandt, C.
    Kumar, R. V.
    Milne, W. I.
    Udrea, F.
    Guha, P. K.
    Covington, J. A.
    Gardner, J. W.
    Garofalo, V.
    [J]. 2009 IEEE SENSORS, VOLS 1-3, 2009, : 114 - +
  • [4] Ali S. Z., 2007, ELECTROTHERMOMECHANI
  • [5] Tungsten-Based SOI Microhotplates for Smart Gas Sensors
    Ali, Syed Z.
    Udrea, Florin
    Milne, William I.
    Gardner, Julian W.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (06) : 1408 - 1417
  • [6] Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye
    Arata, Hideyuki F.
    Low, Peter
    Ishizuka, Koji
    Bergaud, Christian
    Kim, Beomjoon
    Noji, Hiroyuki
    Fujita, Hiroyuki
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (02) : 339 - 345
  • [7] Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy
    Baffou, G.
    Kreuzer, M. P.
    Kulzer, F.
    Quidant, R.
    [J]. OPTICS EXPRESS, 2009, 17 (05): : 3291 - 3298
  • [8] Mapping Heat Origin in Plasmonic Structures
    Baffou, Guillaume
    Girard, Christian
    Quidant, Romain
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [9] In situ high-temperature optical microscopy
    Boccaccini, AR
    Hamann, B
    [J]. JOURNAL OF MATERIALS SCIENCE, 1999, 34 (22) : 5419 - 5436
  • [10] Mapping the Pharyngeal and Intestinal pH of Caenorhabditis elegans and Real-Time Luminal pH Oscillations Using Extended Dynamic Range pH-Sensitive Nanosensors
    Chauhan, Veeren M.
    Orsi, Gianni
    Brown, Alan
    Pritchard, David I.
    Aylott, Jonathan W.
    [J]. ACS NANO, 2013, 7 (06) : 5577 - 5587