Hochschild cohomology and deformation quantization of affine toric varieties

被引:6
作者
Filip, Matej [1 ]
机构
[1] Free Univ Berlin, Inst Math, Berlin, Germany
关键词
Deformation quantization; Hochschild cohomology; Toric singularities; COMPLEX ANALYTIC SPACES; ALGEBRAIC DEFORMATIONS;
D O I
10.1016/j.jalgebra.2018.03.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an affine toric variety Spec(A), we give a convex geometric description of the Hodge decomposition of its Hochschild cohomology. Under certain assumptions we compute the dimensions of the Hodge summands T-(i)(1) (A), generalizing the existing results about the Andre Quillen cohomology group T-(1)(1) (A). We prove that every Poisson structure on a possibly singular affine toric variety can be quantized in the sense of deformation quantization. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:188 / 214
页数:27
相关论文
共 33 条
[1]  
Altmann K, 2000, LOND MATH S, V281, P21
[2]   Andre-Quillen cohomology of monoid algebras [J].
Altmann, K ;
Sletsjoe, AB .
JOURNAL OF ALGEBRA, 1998, 210 (02) :708-718
[3]   The versal deformation of an isolated toric Gorenstein singularity [J].
Altmann, K .
INVENTIONES MATHEMATICAE, 1997, 128 (03) :443-479
[4]   MINKOWSKI SUMS AND HOMOGENEOUS DEFORMATIONS OF TORIC VARIETIES [J].
ALTMANN, K .
TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (02) :151-184
[5]   PROOF OF LOWER BOUND CONJECTURE FOR CONVEX POLYTOPES [J].
BARNETTE, D .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (02) :349-354
[6]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[7]   The structure of the polytope algebra [J].
Brion, M .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (01) :1-32
[8]  
Calaque D., ARXIV150603699
[9]   Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory [J].
Cirafici, Michele ;
Sinkovics, Annamaria ;
Szabo, Richard J. .
NUCLEAR PHYSICS B, 2009, 809 (03) :452-518
[10]  
Cirio L, 2011, ADV THEOR MATH PHYS, V15, P1817