The Klein-Gordon Equation in a Domain with Time-Dependent Boundary

被引:4
作者
Pelloni, B. [1 ]
Pinotsis, D. A. [1 ]
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1111/j.1467-9590.2008.00416.x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve a Dirichlet boundary value problem for the Klein-Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.
引用
收藏
页码:291 / 312
页数:22
相关论文
共 13 条
[1]  
ABLOWITZ MJ, 2004, INTRO APPL COMPLEX V
[2]   The Dirichlet-to-Neumann map for the heat equation on a moving boundary [J].
De Lillo, S. ;
Fokas, A. S. .
INVERSE PROBLEMS, 2007, 23 (04) :1699-1710
[3]   The Dbar formalism for certain linear non-homogeneous elliptic PDEs in two dimensions [J].
Fokas, A. S. ;
Pinotsis, D. A. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2006, 17 :323-346
[4]  
Fokas A. S., 2005, Notices Am. Math. Soc., V52, P1178
[5]   Two-dimensional linear partial differential equations in a convex polygon [J].
Fokas, AS .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2006) :371-393
[6]   A unified transform method for solving linear and certain nonlinear PDEs [J].
Fokas, AS .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1962) :1411-1443
[7]   INTEGRABILITY OF LINEAR AND NONLINEAR EVOLUTION-EQUATIONS AND THE ASSOCIATED NONLINEAR FOURIER-TRANSFORMS [J].
FOKAS, AS ;
GELFAND, IM .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (03) :189-210
[8]   A new transform method for evolution partial differential equations [J].
Fokas, AS .
IMA JOURNAL OF APPLIED MATHEMATICS, 2002, 67 (06) :559-590
[9]  
FOKAS AS, J MATH PHYS, V48
[10]  
PELLONI B, INV PROB IN PRESS