A Second-Order Closure Turbulence Model: New Heat Flux Equations and No Critical Richardson Number

被引:15
作者
Cheng, Y. [1 ,2 ]
Canuto, V. M. [1 ,3 ]
Howard, A. M. [1 ,4 ]
Ackerman, A. S. [1 ]
Kelley, M. [1 ,5 ]
Fridlind, A. M. [1 ]
Schmidt, G. A. [1 ]
Yao, M. S. [1 ,5 ]
Del Genio, A. [1 ]
Elsaesser, G. S. [1 ,2 ]
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Columbia Univ, Ctr Climate Syst Res, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[4] CUNY, Dept Phys & Comp Sci, Medgar Evers Coll, New York, NY 10021 USA
[5] SciSpace LLC, New York, NY USA
关键词
STABLY STRATIFIED FLOWS; LARGE-EDDY SIMULATIONS; STEADY-STATE; PRANDTL NUMBER; ENERGY-MODEL; BUDGET; LAYER; WIND; PARAMETERIZATION; STABILITY;
D O I
10.1175/JAS-D-19-0240.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We formulate a new second-order closure turbulence model by employing a recent closure for the pressure-temperature correlation at the equation level. As a result, we obtain new heat flux equations that avoid the long-standing issue of a finite critical Richardson number. The new, structurally simpler model improves on the Mellor-Yamada and Galperin et al. models; a key feature includes enhanced mixing under stable conditions facilitating agreement with observational, experimental, and high-resolution numerical datasets. The model predicts a planetary boundary layer height deeper than predicted by models with low critical Richardson numbers, as demonstrated in single-column model runs of the GISS ModelE general circulation model.
引用
收藏
页码:2743 / 2759
页数:17
相关论文
共 67 条
[1]   Measurement of Prandtl Number as a Function of Richardson Number Avoiding Self-Correlation [J].
Anderson, Philip S. .
BOUNDARY-LAYER METEOROLOGY, 2009, 131 (03) :345-362
[2]  
ANDRE JC, 1978, J ATMOS SCI, V35, P1861, DOI 10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO
[3]  
2
[4]   Nocturnal low-level jet characteristics over Kansas during CASES-99 [J].
Banta, RM ;
Newsom, RK ;
Lundquist, JK ;
Pichugina, YL ;
Coulter, RL ;
Mahrt, L .
BOUNDARY-LAYER METEOROLOGY, 2002, 105 (02) :221-252
[5]  
Baumert H, 2004, J PHYS OCEANOGR, V34, P505, DOI 10.1175/1520-0485(2004)034<0505:TCSSAC>2.0.CO
[6]  
2
[7]   An intercomparison of large-eddy simulations of the stable boundary layer [J].
Beare, RJ ;
MacVean, MK ;
Holtslag, AAM ;
Cuxart, J ;
Esau, I ;
Golaz, JC ;
Jimenez, MA ;
Khairoutdinov, M ;
Kosovic, B ;
Lewellen, D ;
Lund, TS ;
Lundquist, JK ;
McCabe, A ;
Moene, AF ;
Noh, Y ;
Raasch, S ;
Sullivan, P .
BOUNDARY-LAYER METEOROLOGY, 2006, 118 (02) :247-272
[8]   Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters [J].
Bertin, F ;
Barat, J ;
Wilson, R .
RADIO SCIENCE, 1997, 32 (02) :791-804
[9]   VERTICAL DISTRIBUTION OF WIND AND TURBULENT EXCHANGE IN A NEUTRAL ATMOSPHERE [J].
BLACKADAR, AK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (08) :3095-+
[10]   A New Moist Turbulence Parameterization in the Community Atmosphere Model [J].
Bretherton, Christopher S. ;
Park, Sungsu .
JOURNAL OF CLIMATE, 2009, 22 (12) :3422-3448