Molecule Specific Normalization for Protein and Metabolite Biomarker Discovery

被引:0
作者
Trabelsi, Ameni [1 ]
Shi, Biyun [2 ]
Wei, Xiaoli [2 ]
Frigui, Hichem [1 ,5 ]
Zhang, Xiang [2 ,6 ]
McClain, Craig [3 ,4 ,7 ]
Shahrajooihaghighi, Aliasghar [1 ]
机构
[1] Univ Louisville, Dept Comp Engn & Comp Sci, Louisville, KY 40292 USA
[2] Univ Louisville, Dept Chem, Louisville, KY 40292 USA
[3] Univ Louisville, Dept Med, Louisville, KY 40292 USA
[4] Univ Louisville, Dept Pharmacol Toxicol, Louisville, KY 40292 USA
[5] Univ Louisville, Multimedia Res Lab, Louisville, KY 40292 USA
[6] Univ Louisville, Bioanalyt Grp, Louisville, KY 40292 USA
[7] Louisville VAMC, Gastroenterol, Louisville, KY USA
来源
SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING | 2019年
关键词
Normalization; Robust Surface Fitting; Machine Learning; Loess Regression; Biomarker Discovery; MASS-SPECTROMETRY;
D O I
10.1145/3297280.3297284
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper proposes a molecule specific normalization algorithm, called MSN, which adopts a robust surface fitting strategy to minimize the molecular profile difference of a group of house-keeping molecules across samples. The house-keeping molecules are those molecules whose abundance levels were not affected by the biological treatment. The applications of the MSN method on two different datasets showed that MSN is a highly efficient normalization algorithm that yields the highest sensitivity and accuracy compared to five existing normalization algorithms
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [21] Stable feature selection for biomarker discovery
    He, Zengyou
    Yu, Weichuan
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2010, 34 (04) : 215 - 225
  • [22] Strategies for biomarker discovery in fibrotic disease
    Marshall, Richard P.
    Simpson, Juliet K.
    Lukey, Pauline T.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2013, 1832 (07): : 1079 - 1087
  • [23] Avoiding false discovery in biomarker research
    Patel, Pranali
    Kuzmanov, Uros
    Mital, Seema
    BMC BIOCHEMISTRY, 2016, 17
  • [24] Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method
    Narasimhan, Mythreyi
    Kannan, Sadhana
    Chawade, Aakash
    Bhattacharjee, Atanu
    Govekar, Rukmini
    JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (1)
  • [25] High abundant protein removal from rodent blood for biomarker discovery
    Haudenschild, Dominik R.
    Eldridge, Angela
    Lein, Pamela J.
    Chromy, Brett A.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2014, 455 (1-2) : 84 - 89
  • [26] Discovery of biomarker candidates within disease by protein profiling:: Principles and concepts
    Marko-Varga, G
    Lindberg, H
    Löfdahl, CG
    Jönsson, P
    Hansson, L
    Dahlbäck, M
    Lindquist, E
    Johansson, L
    Foster, M
    Fehniger, TE
    JOURNAL OF PROTEOME RESEARCH, 2005, 4 (04) : 1200 - 1212
  • [27] Advancements within Modern Machine Learning Methodology: Impacts and Prospects in Biomarker Discovery
    Ledesma, Dakila
    Symes, Steven
    Richards, Sean
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (32) : 6512 - 6531
  • [28] The application of mass-spectrometry-based protein biomarker discovery to theragnostics
    Street, Jonathan M.
    Dear, James W.
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2010, 69 (04) : 367 - 378
  • [29] Global proteomics and metabolomics in cancer biomarker discovery
    Issaq, Haleem J.
    Fox, Stephen D.
    Chan, King C.
    Veenstra, Timothy D.
    JOURNAL OF SEPARATION SCIENCE, 2011, 34 (24) : 3484 - 3492
  • [30] Cancer biomarker discovery and translation: proteomics and beyond
    Hristova, Ventzislava A.
    Chan, Daniel W.
    EXPERT REVIEW OF PROTEOMICS, 2019, 16 (02) : 93 - 103