Weak Factorization and Hankel Forms for Bergman-Orlicz Spaces on the Unit Ball

被引:2
作者
Tchoundja, Edgar [1 ]
Zhao, Ruhan [2 ,3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Math, POB 812, Yaounde, Cameroon
[2] SUNY Coll Brockport, Dept Math, Brockport, NY 14420 USA
[3] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
关键词
Hankel operator; Bergman-Orlicz spaces; Weak factorization; HARDY-ORLICZ; OPERATORS;
D O I
10.1007/s00020-019-2515-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Bn be the unit ball of Cn and A phi(Bn) be the Bergman-Orlicz space, consisting of holomorphic functions in L phi(Bn). We characterize bounded Hankel operators between some Bergman-Orlicz spaces A phi 1(Bn) and A phi 2(Bn) where phi 1 and phi 2 are convex growth functions. We then obtain weak factorization theorems for A phi(Bn), with phi a convex growth function, into two Bergman-Orlicz spaces, generalizing the main result obtained in Pau and Zhao (Math Ann 363:363-383, 2015).
引用
收藏
页数:17
相关论文
共 12 条