DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair

被引:16
|
作者
Bajinskis, Ainars [1 ,3 ]
Natarajan, Adayapalam T. [2 ]
Erixon, Klaus [1 ]
Harms-Ringdahl, Mats [1 ]
机构
[1] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Ctr Radiat Protect Res, SE-10691 Stockholm, Sweden
[2] Univ Tuscia, Dept Ecol & Biol Sci, I-01100 Viterbo, Italy
[3] Univ Latvia, Fac Med, LV-1586 Riga, Latvia
关键词
Indirect effect; Non-homologous end joining; Homologous recombination; High-LET radiation; RELATIVE BIOLOGICAL EFFECTIVENESS; BASE EXCISION-REPAIR; HAMSTER OVARY CELLS; IONIZING-RADIATION; MAMMALIAN-CELLS; CHO-CELLS; HUMAN FIBROBLASTS; CHROMATIN ORGANIZATION; SENSITIVE MUTANTS; GAMMA-RAYS;
D O I
10.1016/j.mrgentox.2013.06.012
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by Cs-137 gamma-rays or radon progeny alpha-particles. Irradiation was also performed in the presence of 2 M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with gamma-rays or alpha-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. (c) 2013 Elsevier BM. All rights reserved.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Repair of DNA double strand breaks by non-homologous end joining
    Lees-Miller, SP
    Meek, K
    BIOCHIMIE, 2003, 85 (11) : 1161 - 1173
  • [2] Synergistic Roles of Non-Homologous End Joining and Homologous Recombination in Repair of Ionizing Radiation-Induced DNA Double Strand Breaks in Mouse Embryonic Stem Cells
    van de Kamp, Gerarda
    Heemskerk, Tim
    Kanaar, Roland
    Essers, Jeroen
    CELLS, 2024, 13 (17)
  • [3] Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining
    Mahaney, Brandi L.
    Meek, Katheryn
    Lees-Miller, Susan P.
    BIOCHEMICAL JOURNAL, 2009, 417 : 639 - 650
  • [4] Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells
    de Campos-Nebel, Marcelo
    Larripa, Irene
    Gonzalez-Cid, Marcela
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2008, 646 (1-2) : 8 - 16
  • [5] Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways
    Mladenov, Emil
    Iliakis, George
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2011, 711 (1-2) : 61 - 72
  • [6] DNA double strand break repair via non-homologous end-joining
    Davis, Anthony J.
    Chen, David J.
    TRANSLATIONAL CANCER RESEARCH, 2013, 2 (03) : 130 - 143
  • [7] Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining
    Bergs, Judith W. J.
    Krawczyk, Przemek M.
    Borovski, Tijana
    ten Cate, Rosemarie
    Rodermond, Hans M.
    Stap, Jan
    Medema, Jan Paul
    Haveman, Jaap
    Essers, Jeroen
    van Bree, Chris
    Stalpers, Lukas J. A.
    Kanaar, Roland
    Aten, Jacob A.
    Franken, Nicolaas A. P.
    DNA REPAIR, 2013, 12 (01) : 38 - 45
  • [8] Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks
    Murmann-Konda, Tamara
    Soni, Aashish
    Stuschke, Martin
    Iliakis, George
    MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2021, 867
  • [9] The Non-homologous End-Joining (NHEJ) Pathway for the Repair of DNA Double-Strand Breaks: I. A Mathematical Model
    Taleei, Reza
    Nikjoo, Hooshang
    RADIATION RESEARCH, 2013, 179 (05) : 530 - 539
  • [10] The Saccharomyces cerevisiae DNA damage checkpoint is required for efficient repair of double strand breaks by non-homologous end joining
    de la Torre-Ruiz, MA
    Lowndes, NF
    FEBS LETTERS, 2000, 467 (2-3) : 311 - 315