Hindmarsh-Rose model: Close and far to the singular limit

被引:22
作者
Barrio, Roberto [1 ,2 ,3 ]
Ibanez, Santiago [4 ]
Perez, Lucia [4 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Computat Dynam Grp, E-50009 Zaragoza, Spain
[4] Univ Oviedo, Dept Matemat, E-33007 Oviedo, Spain
基金
奥地利科学基金会;
关键词
Hindmarsh-Rose model; Singular limit; Slow-fast dynamics; Spike-adding; BIFURCATIONS; HOPF;
D O I
10.1016/j.physleta.2016.12.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamics arising in the Hindmarsh-Rose model are considered from a novel perspective. We study qualitative changes that occur as the time scale of the slow variable increases taking the system far from the slow-fast scenario. We see how the structure of spike-adding still persists far from the singular case but the geometry of the bifurcations changes notably. Particular attention is paid to changes in the shape of the homoclinic bifurcation curves and the disappearance of Inclination-Flip codimension-two points. These transformations seem to be linked to the way in which the spike-adding takes place, the changing from fold/hom to fold/Hopf bursting behavior and also with the way in which the chaotic regions evolve as the time scale of the slow variable increases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:597 / 603
页数:7
相关论文
共 21 条
[1]  
[Anonymous], [No title captured]
[2]  
Barrio R., 2014, CHAOS, V24
[3]   Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model [J].
Barrio, Roberto ;
Shilnikov, Andrey .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2011, 1
[4]   Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1087-1100
[5]   When Shil'nikov meets Hopf in excitable systems [J].
Champneys, Alan R. ;
Kirk, Vivien ;
Knobloch, Edgar ;
Oldeman, Bart E. ;
Sneyd, James .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (04) :663-693
[6]   Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster [J].
Desroches, Mathieu ;
Kaper, Tasso J. ;
Krupa, Martin .
CHAOS, 2013, 23 (04)
[7]  
Doedel EJ., 1981, CONGRESSUS NUMERANTI, V30, P25
[8]  
Doedel EJ., AUT02000
[9]   Complex bifurcation structures in the Hindmarsh-Rose neuron model [J].
Gonzalez-Miranda, J. M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (09) :3071-3083
[10]   Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model [J].
González-Miranda, JM .
CHAOS, 2003, 13 (03) :845-852