SCHUBERT VARIETIES ARE LOG FANO OVER THE INTEGERS

被引:0
|
作者
Anderson, Dave [1 ]
Stapledon, Alan [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Schubert variety X-w, we exhibit a divisor Delta, defined over Z, such that the pair (X-w, Delta) is log Fano in all characteristics.
引用
收藏
页码:409 / 411
页数:3
相关论文
共 50 条
  • [1] Log Fano varieties over function fields of curves
    Hassett, Brendan
    Tschinkel, Yuri
    INVENTIONES MATHEMATICAE, 2008, 173 (01) : 7 - 21
  • [2] Log Fano varieties over function fields of curves
    Brendan Hassett
    Yuri Tschinkel
    Inventiones mathematicae, 2008, 173 : 7 - 21
  • [3] Families of canonically polarized manifolds over log Fano varieties
    Lohmann, Daniel
    COMPOSITIO MATHEMATICA, 2013, 149 (06) : 1019 - 1040
  • [4] Asymptotically log Fano varieties
    Cheltsov, Ivan A.
    Rubinstein, Yanir A.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1241 - 1300
  • [5] SIMPLE NORMAL CROSSING FANO VARIETIES AND LOG FANO MANIFOLDS
    Fujita, Kento
    NAGOYA MATHEMATICAL JOURNAL, 2014, 214 : 95 - 123
  • [6] Semiampleness theorem for weak log Fano varieties
    Karzhemanov, I. V.
    SBORNIK MATHEMATICS, 2006, 197 (9-10) : 1459 - 1465
  • [7] On weak Fano varieties with log canonical singularities
    Gongyo, Yoshinori
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 665 : 237 - 252
  • [8] MULTICONES OVER SCHUBERT VARIETIES
    KEMPF, GR
    RAMANATHAN, A
    INVENTIONES MATHEMATICAE, 1987, 87 (02) : 353 - 363
  • [9] Globally F-regular and log Fano varieties
    Schwede, Karl
    Smith, Karen E.
    ADVANCES IN MATHEMATICS, 2010, 224 (03) : 863 - 894
  • [10] On the body of ample angles of asymptotically log Fano varieties
    Paolo Cascini
    Jesus Martinez-Garcia
    Yanir A. Rubinstein
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 773 - 790