Estimation of steady state and dynamic parameters of low concentration photovoltaic system

被引:35
作者
Yadav, Pankaj [1 ]
Tripathi, Brijesh [1 ,2 ]
Lokhande, Makarand [2 ]
Kumar, Manoj [2 ]
机构
[1] Pandit Deendayal Petr Univ, Sch Solar Energy, Gandhinagar 382007, Gujarat, India
[2] Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar 382007, Gujarat, India
关键词
Low-concentration photovoltaic (LCPV) system; Concentration photovoltaic (CPV); Dynamic resistance; Silicon solar PV module; Modelling; Simulation; SILICON SOLAR-CELLS; ARRAY CURRENT; RESISTANCE; MODEL; PERFORMANCE; OBSERVER; TRACKING;
D O I
10.1016/j.solmat.2013.01.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The estimation of steady state and dynamic parameters is indispensable to extract maximum power from solar photovoltaic system. This article aims to extract steady state and dynamic parameters for a low-concentration photovoltaic system under actual test conditions. A theoretical model is reported to estimate dynamic resistance under varying concentration and temperature for low-concentration photovoltaic system. When the concentration ratio is changed from 1 sun to 5.17 suns the maximum power delivered by low-concentration photovoltaic system increased by threefold. The results show that the higher solar PV module temperature has negative impact on the open circuit voltage for a given concentration with negative temperature coefficient of approximate to -0.021 V/K. The observed dynamic resistance was in the range of 17.99 to 24.84 Omega for the low-concentration photovoltaic system under actual test conditions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 72
页数:8
相关论文
共 35 条
[1]  
[Anonymous], 2008, DEV GEN PHOTOVOLTAIC
[2]  
Basore PA, 2007, P 4 IEEE WORLD C PHO, V2, P2089
[3]   MICROCOMPUTER CONTROL OF A RESIDENTIAL PHOTOVOLTAIC POWER CONDITIONING SYSTEM [J].
BOSE, BK ;
SZCZESNY, PM ;
STEIGERWALD, RL .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1985, 21 (05) :1182-1191
[4]   Simple estimation of PV modules loss resistances for low error modelling [J].
Carrero, C. ;
Rodriguez, J. ;
Ramirez, D. ;
Platero, C. .
RENEWABLE ENERGY, 2010, 35 (05) :1103-1108
[5]   Pilot production of concentrator silicon solar cells: Approaching industrialization [J].
Castro, M. ;
Anton, I. ;
Sala, G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (12) :1697-1705
[6]   From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth [J].
Chaudhari, Vikrant A. ;
Solanki, Chetan S. .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2009, 2009
[7]   26-PERCENT EFFICIENT POINT-JUNCTION CONCENTRATOR SOLAR-CELLS WITH A FRONT METAL GRID [J].
CUEVAS, A ;
SINTON, RA ;
MIDKIFF, NE ;
SWANSON, RM .
IEEE ELECTRON DEVICE LETTERS, 1990, 11 (01) :6-8
[8]   Development of a photovoltaic array model for use in power-electronics simulation studies [J].
Gow, JA ;
Manning, CD .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 1999, 146 (02) :193-200
[9]   Exact analytical solutions of the parameters of real solar cells using Lambert W-function [J].
Jain, A ;
Kapoor, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 81 (02) :269-277
[10]   Generalized analysis of the illumination intensity vs. open-circuit voltage of solar cells [J].
Kerr, MJ ;
Cuevas, A .
SOLAR ENERGY, 2004, 76 (1-3) :263-267