Synthetic biology approaches for dynamic CHO cell engineering

被引:10
作者
Donaldson, James [1 ]
Kleinjan, Dirk-Jan [1 ]
Rosser, Susan [1 ]
机构
[1] Univ Edinburgh, UK Ctr Mammalian Synthet Biol, Inst Quantitat Biol Biochem & Biotechnol, Sch Biol Sci, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
HAMSTER OVARY CELLS; RECOMBINANT PROTEIN; MONOCLONAL-ANTIBODY; GENE-EXPRESSION; GROWTH; PRODUCTIVITY; LINE; INHIBITION; RNA; PROLIFERATION;
D O I
10.1016/j.copbio.2022.102806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fed-batch culture of Chinese hamster ovary (CHO) cells remains the most commonly used method for producing biopharmaceuticals. Static CHO cell-line engineering approaches have incrementally improved productivity, growth and product quality through permanent knockout of genes with a negative impact on production, or constitutive overexpression of genes with a positive impact. However, during fed-batch culture, conditions (such as nutrient availability) are continually changing. Therefore, traits that are most beneficial during early-phase culture (such as high growth rate) may be less desirable in late phase. Unlike with static approaches, dynamic cell line engineering strategies can optimise such traits by implementing synthetic sense-and-respond programmes. Here, we review emerging synthetic biology tools that can be used to build dynamic, self-regulating CHO cells, capable of detecting intra-/extracellular cues and generating user-defined responses tailored to the stage-specific needs of the production process.
引用
收藏
页数:9
相关论文
共 79 条
[31]   Engineering CAR-T Cells for Next-Generation Cancer Therapy [J].
Hong, Mihe ;
Clubb, Justin D. ;
Chen, Yvonne Y. .
CANCER CELL, 2020, 38 (04) :473-488
[32]   Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog [J].
Jaluria, Pratik ;
Betenbaugh, Michael ;
Konstantopoulos, Konstantinos ;
Shiloach, Joseph .
BMC BIOTECHNOLOGY, 2007, 7 (1)
[33]   Design of synthetic promoters for controlled expression of therapeutic genes in retinal pigment epithelial cells [J].
Johari, Yusuf B. ;
Mercer, Andrew C. ;
Liu, Ye ;
Brown, Adam J. ;
James, David C. .
BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (05) :2001-2015
[34]   Bioinformatic Design of Dendritic Cell-Specific Synthetic Promoters [J].
Johnson, Abayomi O. ;
Fowler, Susan B. ;
Webster, Carl, I ;
Brown, Adam J. ;
James, David C. .
ACS SYNTHETIC BIOLOGY, 2022, 11 (04) :1613-1626
[35]   Chimeric Antigen Receptor Therapy [J].
June, Carl H. ;
Sadelain, Michel .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) :64-73
[36]   Awakening dormant glycosyltransferases in CHO cells with CRISPRa [J].
Karottki, Karen Julie la Cour ;
Hefzi, Hooman ;
Xiong, Kai ;
Shamie, Isaac ;
Hansen, Anders Holmgaard ;
Li, Songyuan ;
Pedersen, Lasse Ebdrup ;
Li, Shangzhong ;
Lee, Jae Seong ;
Lee, Gyun Min ;
Kildegaard, Helene Faustrup ;
Lewis, Nathan E. .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (02) :593-598
[37]   RNA and protein-based nanodevices for mammalian post-transcriptional circuits [J].
Kawasaki, Shunsuke ;
Ono, Hiroki ;
Hirosawa, Moe ;
Saito, Hirohide .
CURRENT OPINION IN BIOTECHNOLOGY, 2020, 63 :99-110
[38]   Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells [J].
Kawasaki, Shunsuke ;
Fujita, Yoshihiko ;
Nagaike, Takashi ;
Tomita, Kozo ;
Saito, Hirohide .
NUCLEIC ACIDS RESEARCH, 2017, 45 (12)
[39]   Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system [J].
Kipniss, Nathan H. ;
Dingal, P. C. Dave P. ;
Abbott, Timothy R. ;
Gao, Yuchen ;
Wang, Haifeng ;
Dominguez, Antonia A. ;
Labanieh, Louai ;
Qi, Lei S. .
NATURE COMMUNICATIONS, 2017, 8
[40]   Selection of CHO host and recombinant cell pools by inhibition of the proteasome results in enhanced product yields and cell specific productivity [J].
Knight, Tanya J. ;
Turner, Sarah ;
Jaques, Colin M. ;
Smales, Mark .
JOURNAL OF BIOTECHNOLOGY, 2021, 337 :35-45