On the Northcott property and other properties related to polynomial mappings

被引:12
作者
Checcoli, Sara [1 ]
Widmer, Martin [2 ]
机构
[1] Univ Basel, Inst Math, CH-4051 Basel, Switzerland
[2] Graz Univ Technol, Dept Anal & Computat Number Theory, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
FIELDS;
D O I
10.1017/S0305004113000042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if K/Q is a Galois extension of finite exponent and K-(d) is the compositum of all extensions of K of degree at most d, then K-(d) has the Bogomolov property and the maximal abelian subextension of K-(d)/Q has the Northcott property. Moreover, we prove that given any sequence of finite solvable groups {G(m)}(m) there exists a sequence of Galois extensions {K-m}(m) with Gal(K-m/Q) = G(m) such that the compositum of the fields Km has the Northcott property. In particular we provide examples of fields with the Northcott property with uniformly bounded local degrees but not contained in Q((d)). We also discuss some problems related to properties introduced by Liardet and Narkiewicz to study polynomial mappings. Using results on the Northcott property and a result by Dvornicich and Zannier we easily deduce answers to some open problems proposed by Narkiewicz.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 21 条
[1]  
Bombieri E., 2001, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei. Matematica e Applicazioni, V12, P5
[2]  
BOMBIERI E., 2006, HEIGHTS DIOPHANTINE
[3]  
Checcoli S, 2013, T AM MATH SOC, V365, P2223
[4]   On fields of algebraic numbers with bounded local degrees [J].
Checcoli, Sara ;
Zannier, Umberto .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (1-2) :11-14
[5]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[6]   Cyclotomic diophantine problems (hilbert irreducibility and invariant sets for polynomial maps) [J].
Dvornicich, R. ;
Zannier, U. .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) :527-554
[7]   ON THE PROPERTIES OF NORTHCOTT AND OF NARKIEWICZ FOR FIELDS OF ALGEBRAIC NUMBERS [J].
Dvornicich, Roberto ;
Zannier, Umberto .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 39 (01) :163-173
[8]  
Fried MD, 2008, ERGEB MATH GRENZGEB, V11, P1
[9]  
HALTERKOCH F, 1992, MATH NACHR, V159, P7
[10]  
KUBOTA K. K., 1972, J NUMBER THEORY, V4, P181