Ore Extensions for the Sweedler's Hopf Algebra H4

被引:8
作者
Yang, Shilin [1 ]
Zhang, Yongfeng [1 ]
机构
[1] Beijing Univ Technol, Sch Math, Fac Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Ore extension; Drinfeld twist; twisted homomorphism; Hopf algebra; DEFORMATIONS; CLASSIFICATION;
D O I
10.3390/math8081293
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to classify all Hopf algebra structures on the quotient of Ore extensions H-4[z;sigma]of automorphism type for the Sweedler ' s 4-dimensional Hopf algebra H-4. Firstly, we calculate all equivalent classes of twisted homomorphisms (sigma,J) for H-4. Then we give the classification of all bialgebra (Hopf algebra) structures on the quotients of H-4[z;sigma] up to isomorphism.
引用
收藏
页数:24
相关论文
共 22 条
[1]   Constructing pointed Hopf algebras by ore extensions [J].
Beattie, M ;
Dascalescu, S ;
Grünenfelder, L .
JOURNAL OF ALGEBRA, 2000, 225 (02) :743-770
[2]   Connected Hopf algebras and iterated Ore extensions [J].
Brown, K. A. ;
O'Hagan, S. ;
Zhang, J. J. ;
Zhuang, G. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) :2405-2433
[3]  
Davydov A., 2010, Noncommutative structures in mathematics and physics, P103
[4]   The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field [J].
Etingof, P ;
Gelaki, S .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (05) :223-234
[5]  
Etingof P, 2001, MATH RES LETT, V8, P249, DOI 10.4310/MRL.2001.v8.n3.a2
[6]   THE CLASSIFICATION OF FINITE-DIMENSIONAL TRIANGULAR HOPF ALGEBRAS OVER AN ALGEBRAICALLY CLOSED FIELD OF CHARACTERISTIC 0 [J].
Etingof, Pavel ;
Gelaki, Shlomo .
MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) :37-43
[7]   Normal Hopf subalgebras in cocycle deformations of finite groups [J].
Galindo, Cesar ;
Natale, Sonia .
MANUSCRIPTA MATHEMATICA, 2008, 125 (04) :501-514
[8]  
Galindo C, 2007, MATH RES LETT, V14, P943, DOI 10.4310/MRL.2007.v14.n6.a4
[9]  
McConnell J. C., 1987, Noncommutative Noetherian Rings
[10]  
Montgomery S., 1993, CBMS REG C SER MATH, V82