Analysis of Scalar Maps for the Segmentation of the Corpus Callosum in Diffusion Tensor Fields

被引:16
作者
Rittner, Leticia [1 ]
Campbell, Jennifer S. W. [3 ]
Freitas, Pedro F. [1 ]
Appenzeller, Simone [2 ]
Pike, G. Bruce [3 ]
Lotufo, Roberto A. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Dept Rheumatol, BR-13083887 Campinas, SP, Brazil
[3] McGill Univ, McConnell Brain Imaging Ctr, Montreal Neurol Inst, Montreal, PQ H3A 2B4, Canada
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Diffusion scalar maps; Diffusion tensor imaging; Mathematical morphology; Segmentation; Watershed; Corpus Callosum; IMAGE FORESTING TRANSFORM; DTI SEGMENTATION; THALAMIC NUCLEI; MR-IMAGES; FRAMEWORK; WATERSHEDS; CORTEX;
D O I
10.1007/s10851-012-0377-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diffusion tensor imaging (DTI) is a powerful technique for imaging axonal anatomy in vivo and its automatic segmentation is important for quantitative analysis and visualization. Application of the watershed transform is a recent approach for robustly segmenting diffusion tensor images. Since an important step of the watershed-based segmentation is the gradient computation, this paper investigates scalar maps from DTI and their ability to enhance borders and, therefore, their usefulness in gradient calculation. A comparison between existing scalar maps is conducted in the context of segmentation. New diffusion scalar maps, inspired by mathematical morphology concepts are proposed and included in the comparison. The watershed transform is then applied to segment the corpus callosum, based on the computed scalar maps.
引用
收藏
页码:214 / 226
页数:13
相关论文
共 46 条
[1]  
Alexander D., 1999, BMVC99. Proceedings of the 10th British Machine Vision Conference, P93
[2]  
[Anonymous], 2007, INT J BIOMED IMAGING
[3]  
[Anonymous], 2018, Mathematical Morphology in Image Processing, DOI DOI 10.1201/9781482277234-12/MORPHOLOGICAL-APPROACHSEGMENTATION-WATERSHED-TRANSFORMATION-BEUCHER-MEYER
[4]   Log-euclidean metrics for fast and simple calculus on diffusion tensors [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :411-421
[5]  
Awate SP, 2007, LECT NOTES COMPUT SC, V4584, P296
[6]   DTI segmentation via the combined analysis of connectivity maps and tensor distances [J].
Barbieri, Sebastiano ;
Bauer, Miriam H. A. ;
Klein, Jan ;
Moltz, Jan ;
Nimsky, Christopher ;
Hahn, Horst K. .
NEUROIMAGE, 2012, 60 (02) :1025-1035
[7]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[8]   A rigorous framework for diffusion tensor calculus [J].
Batchelor, PG ;
Moakher, M ;
Atkinson, D ;
Calamante, F ;
Connelly, A .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (01) :221-225
[9]   Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging [J].
Behrens, TEJ ;
Johansen-Berg, H ;
Woolrich, MW ;
Smith, SM ;
Wheeler-Kingshott, CAM ;
Boulby, PA ;
Barker, GJ ;
Sillery, EL ;
Sheehan, K ;
Ciccarelli, O ;
Thompson, AJ ;
Brady, JM ;
Matthews, PM .
NATURE NEUROSCIENCE, 2003, 6 (07) :750-757
[10]  
Castellano G, 2003, IEEE IMAGE PROC, P357