Asymmetric chirplet transform - Part 2: Phase, frequency, and chirp rate

被引:15
作者
Bossmann, Florian [1 ]
Ma, Jianwei [2 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, Gottingen, Germany
[2] Harbin Inst Technol, Dept Math, Harbin, Peoples R China
关键词
SEISMIC DATA; SPARSE REPRESENTATION; PARAMETER-ESTIMATION; WAVELET TRANSFORM; CURVELET DOMAIN; INVERSION; PHASE; INTERPOLATION; DECOMPOSITION; FRAME;
D O I
10.1190/GEO2015-0696.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An asymmetric chirplet transform, also called the asymmetric Gaussian chirplet model (AGCM), was recently introduced for fast and accurate extraction of important information from seismic signals. Unlike Fourier or wavelet transforms with fixed base functions, the AGCM is an adaptive sparse representation based on the physical parameters of the given data. The atoms of AGCM, so-called chirplets, display asymmetric oscillation-attenuation properties. The AGCM decomposes seismic signals into nonstationary compressed plane waves. The waves or atoms consist of two parts with seven physical parameters: the envelope and frequency parts. We have determined how to reconstruct the envelope part (e.g., envelope amplitude and arrival time) of the seismic data. We concentrate on the frequency part that involves three parameters: phase, frequency, and chirp rate. A Newton method with a step-size choice is established to deal with the highly oscillating frequency part of AGCM. The model parameters or coefficients in the transform domain may not only provide explicit physical interpretation (e.g., local phase of signal), but they can also be potentially used for feature extraction and other applications. Numerical results indicate excellent approximation results with good runtime performance. Physically reasonable parameter interpretation is demonstrated.
引用
收藏
页码:V425 / V439
页数:15
相关论文
共 50 条
[11]   Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization [J].
Chen, Yangkang ;
Fomel, Sergey ;
Hu, Jingwei .
GEOPHYSICS, 2014, 79 (05) :V179-V189
[12]   Unwrapped phase inversion with an exponential damping [J].
Choi, Yunseok ;
Alkhalifah, Tariq .
GEOPHYSICS, 2015, 80 (05) :R251-R264
[13]   Seismic imaging with the generalized Radon transform: a curvelet transform perspective [J].
de Hoop, M. V. ;
Smith, H. ;
Uhlmann, G. ;
van der Hilst, R. D. .
INVERSE PROBLEMS, 2009, 25 (02)
[14]   Asymmetric Gaussian chirplet model and parameter estimation for generalized echo representation [J].
Demirli, Ramazan ;
Saniie, Jafar .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (02) :907-921
[15]   Curvelet-based multiple prediction [J].
Donno, Daniela ;
Chauris, Herve ;
Noble, Mark .
GEOPHYSICS, 2010, 75 (06) :WB255-WB263
[16]   Discrete Almost-Symmetric Wave Packets and Multiscale Geometrical Representation of (Seismic) Waves [J].
Duchkov, Anton A. ;
Andersson, Fredrik ;
de Hoop, Maarten V. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09) :3408-3423
[17]   Local seismic attributes [J].
Fomel, Sergey .
GEOPHYSICS, 2007, 72 (03) :A29-A33
[18]   Local skewness attribute as a seismic phase detector [J].
Fomel, Sergey ;
van der Baan, Mirko .
Interpretation-A Journal of Subsurface Characterization, 2014, 2 (01) :SA49-SA56
[19]   Seismic data decomposition into spectral components using regularized nonstationary autoregression [J].
Fomel, Sergey .
GEOPHYSICS, 2013, 78 (06) :O69-O76
[20]   Seislet transform and seislet frame [J].
Fomel, Sergey ;
Liu, Yang .
GEOPHYSICS, 2010, 75 (03) :V25-V38