Real Multiplication on K3 Surfaces and Kuga-Satake Varieties

被引:20
|
作者
van Geemen, Bert [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
D O I
10.1307/mmj/1224783519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:375 / 399
页数:25
相关论文
共 50 条
  • [41] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [42] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [43] SUPERSINGULAR K3 SURFACES
    ARTIN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1974, 7 (04): : 543 - 567
  • [44] On normal K3 surfaces
    Shimada, Ichiro
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 395 - 416
  • [45] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [46] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182
  • [47] Zariski K3 surfaces
    Katsura, Toshiyuki
    Schuett, Matthias
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 869 - 894
  • [48] CURVES ON K3 SURFACES
    Chen, Xi
    Gounelas, Frank
    Liedtke, Christian
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (16) : 3283 - 3362
  • [49] Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties
    Atsushi Ito
    Makoto Miura
    Shinnosuke Okawa
    Kazushi Ueda
    Selecta Mathematica, 2020, 26
  • [50] Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties
    Ito, Atsushi
    Miura, Makoto
    Okawa, Shinnosuke
    Ueda, Kazushi
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (03):