Interface Chemistry on MXene-Based Materials for Enhanced Energy Storage and Conversion Performance

被引:213
作者
Hui, Xiaobin [1 ]
Ge, Xiaoli [1 ]
Zhao, Ruizheng [1 ]
Li, Zhaoqiang [1 ]
Yin, Longwei [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
关键词
electrochemical energy storage; heterostructures; interfaces; microstructure; MXenes; 2-DIMENSIONAL TITANIUM CARBIDE; LI-ION BATTERIES; ANODE MATERIALS; TI3C2TX MXENE; PSEUDOCAPACITIVE ELECTRODES; ELECTROCHEMICAL PROPERTIES; INTERCALATION MECHANISM; ACTUATION PROPERTIES; SURFACE-STRUCTURE; GRAPHITIC CARBON;
D O I
10.1002/adfm.202005190
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes have attracted increasing attention due to their unique advantages, excellent electronic conductivity, tunable layer structure, and controllable interfacial chemistry. However, the practical applications of MXenes in energy storage devices are severely limited by the issues of torpid reaction kinetics, limited active sites, and poor material utilization efficiency. Herein, the most-up-to date advances in the rational microstructure design to enhance electrochemical reaction kinetics and energy storage performance of MXene-based materials are comprehensively summarized. This review begins with the preparation and properties of MXenes, classified into fluorine-containing acid etching and fluoride-free etching approaches. Afterwards, the interlayer structure design and interfacial functionalization of MXenes with respect to interlayer spacing and porous structure, terminal groups, and surface defects are summarized. Then the focus turns to the construction of advanced MXene-based heterojunctions based on in situ derivation and surface self-assembly. Based on these microstructure modulating strategies, the state-of-the-art progress of MXene-based applications with respect to supercapacitors, alkali metal-ion batteries, metal-sulfur batteries, and photo/electrocatalysis are highlighted. Finally, the critical challenges and perspectives for the future research of 2D MXene-based nanostructures are highlighted, aiming to present a comprehensive reference for the design of MXene-based electrodes for electrochemical energy storage.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] MXene-based materials for electrochemical energy storage
    Zhang, Xu
    Zhang, Zihe
    Zhou, Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (01) : 73 - 85
  • [2] MXene-Based Nanocomposites for Energy Conversion and Storage Applications
    Zhang, Aitang
    Liu, Rui
    Tian, Jinmi
    Huang, Weiguo
    Liu, Jingquan
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (29) : 6342 - 6359
  • [3] Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications
    Nahirniak, Svitlana
    Ray, Apurba
    Saruhan, Bilge
    BATTERIES-BASEL, 2023, 9 (02):
  • [4] MXene-based materials for electrochemical energy storage
    Xu Zhang
    Zihe Zhang
    Zhen Zhou
    Journal of Energy Chemistry , 2018, (01) : 73 - 85
  • [5] Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage
    Yu, Hong
    Wang, Yonghui
    Jing, Yao
    Ma, Jianmin
    Du, Cheng-Feng
    Yan, Qingyu
    SMALL, 2019, 15 (25)
  • [6] MXenes and MXene-based composites for energy conversion and storage applications
    Xiao, Zhuohao
    Xiao, Xiaodong
    Kong, Ling Bing
    Dong, Hongbo
    Li, Xiuying
    Sun, Xinyuan
    He, Bin
    Ruan, Shuangchen
    Zhai, Jianpang
    JOURNAL OF MATERIOMICS, 2023, 9 (06) : 1067 - 1112
  • [7] Freestanding MXene-based macroforms for electrochemical energy storage applications
    Lu, Qiongqiong
    Liu, Congcong
    Zhao, Yirong
    Pan, Wengao
    Xie, Kun
    Yue, Pengfei
    Zhang, Guoshang
    Omar, Ahmad
    Liu, Lixiang
    Yu, Minghao
    Mikhailova, Daria
    SUSMAT, 2023, 3 (04): : 471 - 497
  • [8] Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion
    Jiang, Wei
    Zou, Xiaolong
    Du, Hongda
    Gan, Lin
    Xu, Chengjun
    Kang, Feiyu
    Duan, Wenhui
    Li, Jia
    CHEMISTRY OF MATERIALS, 2018, 30 (08) : 2687 - 2693
  • [9] Tailoring MXene-Based Materials for Sodium-Ion Storage: Synthesis, Mechanisms, and Applications
    Lei, Yao-Jie
    Yan, Zi-Chao
    Lai, Wei-Hong
    Chou, Shu-Lei
    Wang, Yun-Xiao
    Liu, Hua-Kun
    Dou, Shi-Xue
    ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (04) : 766 - 792
  • [10] Unleashing the Potential of MXene-Based Flexible Materials for High-Performance Energy Storage Devices
    Zhou, Yunlei
    Yin, Liting
    Xiang, Shuangfei
    Yu, Sheng
    Johnson, Hannah M.
    Wang, Shaolei
    Yin, Junyi
    Zhao, Jie
    Luo, Yang
    Chu, Paul K.
    ADVANCED SCIENCE, 2024, 11 (03)