The Steiner diameter of a graph with prescribed girth

被引:10
作者
Ali, Patrick [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa
基金
新加坡国家研究基金会;
关键词
Diameter; Steiner diameter; Girth;
D O I
10.1016/j.disc.2013.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph of order p, and let S be a nonempty set of vertices of G. Then the Steiner distance d(S) of S is the minimum size of a connected subgraph of G whose vertex set contains S. If n is an integer, 2 <= n <= p, the Steiner n-diameter, diam(n)(G), of G is the maximum Steiner distance of any n-subset of vertices of G. We give upper bounds on the Steiner n-diameter of G in terms of order, minimum degree delta, and girth g, of G. Moreover, we construct graphs to show that, if for given delta and g there exists a Moore graph of minimum degree delta and girth g, then the bounds are asymptotically sharp. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1322 / 1326
页数:5
相关论文
共 8 条
[1]   Upper bounds on the Steiner diameter of a graph [J].
Ali, Patrick ;
Dankelmann, Peter ;
Mukwembi, Simon .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) :1845-1850
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[3]  
Dankelmann P, 2000, J GRAPH THEOR, V33, P1, DOI 10.1002/(SICI)1097-0118(200001)33:1<1::AID-JGT1>3.0.CO
[4]  
2-L
[5]  
Dankelmann Peter., 1999, Combinatorics, graph theory, and algorithms, Vol. I, II (Kalamazoo, MI, VI, P269
[6]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[7]  
Oellermann OR, 1999, NETWORKS, V34, P258, DOI 10.1002/(SICI)1097-0037(199912)34:4<258::AID-NET4>3.0.CO
[8]  
2-2