Computing class groups of function fields using stark units

被引:0
作者
Huang, Ming-Deh [1 ]
Narayanan, Anand Kumar [1 ]
机构
[1] Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA
来源
TOPICS IN FINITE FIELDS | 2015年 / 632卷
关键词
function fields; class groups; FACTORING POLYNOMIALS; STICKELBERGER IDEALS; DENSITY-THEOREM; EULER SYSTEMS;
D O I
10.1090/conm/632/12629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a fixed finite geometric extension of the rational function field F-q(t). Let F/k be a finite abelian extension such that there is an F-q-rational place on in k which splits in F/(k) and let O-F denote the integral closure in F of the ring of functions in k that are regular outside co. We describe algorithms for computing the divisor class number and in certain cases for computing the structure of the divisor class group and discrete logarithms between Galois conjugate divisors in the divisor class group of F. The algorithms are efficient when F is a narrow ray class field or a small index subextension of a narrow ray class field. We prove that for all prime e not dividing q(q-1)[F : k], the structure of the e-part of the ideal class group Pic(O-F) of OF is determined by Kolyvagin derivative classes that are constructed out of Euler systems associated with Stark units. This leads to an algorithm to compute the structure of the e primary part of the divisor class group of a narrow ray class field for all primes e not dividing q(q 1)[F : k].
引用
收藏
页码:193 / 214
页数:22
相关论文
共 29 条
[1]   The distribution of class groups of function fields [J].
Achter, JD .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 204 (02) :316-333
[2]   Cyclotomic units and Stickelberger ideals of global function fields [J].
Ahn, J ;
Bae, S ;
Jung, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :1803-1818
[3]   FACTORING POLYNOMIALS OVER LARGE FINITE FIELDS [J].
BERLEKAMP, ER .
MATHEMATICS OF COMPUTATION, 1970, 24 (111) :713-+
[4]   Kolyvagin's ''Euler systems'' in cyclotomic function fields [J].
Feng, KQ ;
Xu, F .
JOURNAL OF NUMBER THEORY, 1996, 57 (01) :114-121
[5]  
Friedman E., 1989, THEORIE DES NOMBRES, P227
[6]  
Gras G., 1977, Ann. Inst. Fourier, V27, P1, DOI [DOI 10.5802/AIF.6412, 10.5802/aif.641, DOI 10.5802/AIF.6412,3,5]
[7]  
Hayes David, 1979, Adv. in Math. Suppl. Stud., V6, P173
[8]  
Hayes David R., 1981, PROGR MATH, V26, P321
[9]  
HAYES DR, 1974, T AM MATH SOC, V189, P77
[10]  
HAYES DR, 1985, COMPOS MATH, V55, P209