A brainwide atlas of synapses across the mouse life span

被引:108
作者
Cizeron, Melissa [1 ,2 ]
Qiu, Zhen [1 ]
Koniaris, Babis [1 ,3 ]
Gokhale, Ragini [1 ]
Komiyama, Noboru H. [1 ,4 ]
Fransen, Erik [5 ,6 ]
Grant, Seth G. N. [1 ,4 ]
机构
[1] Univ Edinburgh, Genes Cognit Program, Ctr Clin Brain Sci, Edinburgh EH16 4SB, Midlothian, Scotland
[2] Univ Claude Bernard Lyon 1, Univ Lyon, Inst NeuroMyoGene, CNRS,INSERM,U1217,UMR 5310, F-69008 Lyon, France
[3] Edinburgh Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland
[4] Univ Edinburgh, Ctr Discovery Brain Sci, Simons Initiat Developing Brain SIDB, Edinburgh EH8 9XD, Midlothian, Scotland
[5] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Computat Sci & Technol, S-10044 Stockholm, Sweden
[6] KTH Royal Inst Technol, Sci Life Lab, SE-17165 Solna, Sweden
基金
英国惠康基金; 欧洲研究理事会;
关键词
LONG-TERM POTENTIATION; POSTSYNAPTIC DENSITY-95; SYNAPTIC PLASTICITY; NMDA RECEPTORS; CORTEX; DIFFERENTIATION; ABILITIES; COMPLEX;
D O I
10.1126/science.aba3163
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synapses connect neurons together to form the circuits of the brain, and their molecular composition controls innate and learned behavior. We analyzed the molecular and morphological diversity of 5 billion excitatory synapses at single-synapse resolution across the mouse brain from birth to old age. A continuum of changes alters synapse composition in all brain regions across the life span. Expansion in synapse diversity produces differentiation of brain regions until early adulthood, and compositional changes cause dedifferentiation in old age. The spatiotemporal synaptome architecture of the brain potentially accounts for life-span transitions in intellectual ability, memory, and susceptibility to behavioral disorders. © 2020 American Association for the Advancement of Science. All rights reserved.
引用
收藏
页码:270 / +
页数:86
相关论文
共 43 条
[1]   SYNAPTIC REMODELING AND ASTROCYTIC HYPERTROPHY IN RAT CEREBRAL-CORTEX FROM EARLY TO LATE ADULTHOOD [J].
ADAMS, I ;
JONES, DG .
NEUROBIOLOGY OF AGING, 1982, 3 (03) :179-186
[2]  
AGHAJANIAN G. K., 1967, BRAIN RES, V6, P716, DOI 10.1016/0006-8993(67)90128-X
[3]   INTEGRATION VERSUS DIFFERENTIATION OF FLUID-CRYSTALLIZED INTELLIGENCE IN OLD-AGE [J].
BALTES, PB ;
CORNELIUS, SW ;
SPIRO, A ;
NESSELROADE, JR ;
WILLIS, SL .
DEVELOPMENTAL PSYCHOLOGY, 1980, 16 (06) :625-635
[4]   Hippocampal synaptic plasticity, spatial memory and anxiety [J].
Bannerman, David M. ;
Sprengel, Rolf ;
Sanderson, David J. ;
McHugh, Stephen B. ;
Rawlins, J. Nicholas P. ;
Monyer, Hannah ;
Seeburg, Peter H. .
NATURE REVIEWS NEUROSCIENCE, 2014, 15 (03) :181-192
[5]  
Basu J., 2015, COLD SPRING HARB PER
[6]   The Corticohippocampal Circuit, Synaptic Plasticity, and Memory [J].
Basu, Jayeeta ;
Siegelbaum, Steven A. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2015, 7 (11)
[7]   Characterization of the proteome, diseases and evolution of the human postsynaptic density [J].
Bayes, Alex ;
van de Lagemaat, Louie N. ;
Collins, Mark O. ;
Croning, Mike D. R. ;
Whittle, Ian R. ;
Choudhary, Jyoti S. ;
Grant, Seth G. N. .
NATURE NEUROSCIENCE, 2011, 14 (01) :19-21
[8]   PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits [J].
Broadhead, Matthew J. ;
Horrocks, Mathew H. ;
Zhu, Fei ;
Muresan, Leila ;
Benavides-Piccione, Ruth ;
DeFelipe, Javier ;
Fricker, David ;
Kopanitsa, Maksym V. ;
Duncan, Rory R. ;
Klenerman, David ;
Komiyama, Noboru H. ;
Lee, Steven F. ;
Grant, Seth G. N. .
SCIENTIFIC REPORTS, 2016, 6
[9]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[10]   Mass of the postsynaptic density and enumeration of three key molecules [J].
Chen, XB ;
Vinade, L ;
Leapman, RD ;
Petersen, JD ;
Nakagawa, T ;
Phillips, TM ;
Sheng, M ;
Reese, TS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (32) :11551-11556