Synthetic chemistry in water: applications to peptide synthesis and nitro-group reductions

被引:41
作者
Cortes-Clerget, Margery [1 ]
Lee, Nicholas R. [1 ]
Lipshutz, Bruce H. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
关键词
PROTECTING-GROUP; SOLVENT;
D O I
10.1038/s41596-019-0130-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Amide bond formation and aromatic/heteroaromatic nitro-group reductions represent two of the most commonly used transformations in organic synthesis. Unfortunately, such processes can be especially wasteful and hence environmentally harmful, and may present safety hazards as well, given the reaction conditions involved. The two protocols herein describe alternative technologies that offer solutions to these issues. Polypeptides can now be made in water at ambient temperatures using small amounts of the designer surfactant TPGS-750-M, thereby eliminating the use of organic solvents as the reaction medium. Likewise, a safe, inexpensive and efficient procedure is outlined for nitro-group reductions, using industrial iron in the form of carbonyl iron powder (CIP), an inexpensive item of commerce. The peptide synthesis will typically take, overall, 3-4 h for a simple coupling and 8 h for a two-step deprotection/coupling process. The workup usually consists of a simple extraction and acidic/basic aqueous washings. The nitro reduction procedure will typically take 6-8 h to complete, including setup, reaction time and workup.
引用
收藏
页码:1108 / 1129
页数:22
相关论文
共 23 条
[1]   Environmentally benign peptide synthesis using liquid-assisted ball-milling: application to the synthesis of Leu-enkephalin [J].
Bonnamour, Julien ;
Metro, Thomas-Xavier ;
Martinez, Jean ;
Lamaty, Frederic .
GREEN CHEMISTRY, 2013, 15 (05) :1116-1120
[2]   Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? [J].
Brow, Dean G. ;
Bostrom, Jonas .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (10) :4443-4458
[3]   Tandem deprotection/coupling for peptide synthesis in water at room temperature [J].
Cortes-Clerget, Margery ;
Berthon, Jean-Yves ;
Krolikiewicz-Renimel, Isabelle ;
Chaisemartin, Laurent ;
Lipshutz, Bruce H. .
GREEN CHEMISTRY, 2017, 19 (18) :4263-4267
[4]   Steps Toward Green Peptide Synthesis [J].
Datta, Silpi ;
Sood, Abha ;
Toeroek, Marianna .
CURRENT ORGANIC SYNTHESIS, 2011, 8 (02) :262-280
[5]   Solvent-Free Synthesis of Peptides [J].
Declerck, Valerie ;
Nun, Pierrick ;
Martinez, Jean ;
Lamaty, Frederic .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (49) :9318-9321
[6]  
European Chemicals Agency, 2012, MEMB STAT COMM SUPP
[7]   Amide and Peptide Bond Formation in Water at Room Temperature [J].
Gabriel, Christopher M. ;
Keener, Megan ;
Gallou, Fabrice ;
Lipshutz, Bruce H. .
ORGANIC LETTERS, 2015, 17 (16) :3968-3971
[8]   2-(4-Sulfophenyisulfonyl)ethoxycarbonyl group:: a new water-soluble N-protecting group and its application to solid phase peptide synthesis in water [J].
Hojo, K ;
Maeda, M ;
Kawasaki, K .
TETRAHEDRON LETTERS, 2004, 45 (50) :9293-9295
[9]   Aqueous microwave-assisted solid-phase peptide synthesis using Fmoc strategy. III: Racemization studies and water-based synthesis of histidine-containing peptides [J].
Hojo, Keiko ;
Shinozaki, Natsuki ;
Hidaka, Koushi ;
Tsuda, Yuko ;
Fukumori, Yoshinobu ;
Ichikawa, Hideki ;
Wade, John D. .
AMINO ACIDS, 2014, 46 (10) :2347-2354
[10]   Peptide synthesis beyond DMF: THF and ACN as excellent and friendlier alternatives [J].
Jad, Yahya E. ;
Acosta, Gerardo A. ;
Khattab, Sherine N. ;
de la Torre, Beatriz G. ;
Govender, Thavendran ;
Kruger, Hendrik G. ;
El-Faham, Ayman ;
Albericio, Fernando .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2015, 13 (08) :2393-2398