Study of the structural nonuniformity and low-temperature micromechanical properties of ultrafine-grain aluminum

被引:7
作者
Estrin, Yu. Z. [1 ,2 ]
Fomenko, L. S. [3 ]
Lubenets, S. V. [3 ]
Shumilin, S. E. [3 ]
Pustovalov, V. V. [3 ]
机构
[1] Monash Univ, Dept Mat Engn, ARC Ctr Excellence Design Light Met, Clayton, Vic 3168, Australia
[2] CSIRO, Div Mat Sci & Engn, Clayton, Vic 3168, Australia
[3] Natl Acad Sci Ukraine, BI Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine
关键词
D O I
10.1063/1.2973719
中图分类号
O59 [应用物理学];
学科分类号
摘要
The optimal conditions for measuring the microhardness of aluminum, concerning the surface preparation of the samples (electropolishing) and the load on an indenter (at least 0.5 N), are determined. The degree of structural uniformity of aluminum after deformation by equal-channel angular pressing (ECAP) is studied by the microindentation method. It is found that the microhardness of an extruded blank varies over the cross-section, and it reaches its maximum value in the central part. The nonuniformity decreases as the number of passes increases. The main structural changes giving rise to hardening occur during the first pass. The temperature dependence of the microhardness in the interval 77-295 K intensifies as the number of ECAP passes increases. The Hall-Petch law describes the hardening of aluminum as result of grain-size reduction during ECAP well, and the Hall-Petch coefficient increases as temperature decreases. For ultrafine-grain aluminum the microhardness and yield stress with strain epsilon=0.076 are related as H-V=(3.7-4.2)sigma(0.076). (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2973719]
引用
收藏
页码:771 / 776
页数:6
相关论文
共 25 条
[1]  
[Anonymous], 2007, FTT
[2]  
[Anonymous], 1986, PHYS MICROINDENTATIO
[3]  
ARGON AS, 1977, APPL SCI, V17
[4]   Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing [J].
Baik, SC ;
Estrin, Y ;
Kim, HS ;
Hellmig, RJ .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 351 (1-2) :86-97
[5]  
BERG G, 1993, CRYST RES TECHNOL, V28, P647
[6]   Effect of microstructure on plastic deformation of Cu at low homologous temperatures [J].
Estrin, Y. ;
Isaev, N. V. ;
Lubenets, S. V. ;
Malykhin, S. V. ;
Pugachov, A. T. ;
Pustovalov, V. V. ;
Reshetnyak, E. N. ;
Fomenko, V. S. ;
Fomenko, L. S. ;
Shumilin, S. E. ;
Janecek, M. ;
Hellmig, R. J. .
ACTA MATERIALIA, 2006, 54 (20) :5581-5590
[7]   Low-temperature plastic strain of ultrafine-grain aluminum [J].
Estrin, Yu. Z. ;
Isaev, N. V. ;
Grigorova, T. V. ;
Pustovalov, V. V. ;
Fomenko, V. S. ;
Shumilin, S. E. ;
Braude, I. S. ;
Malykhin, S. V. ;
Reshetnyak, M. V. ;
Janecek, M. .
LOW TEMPERATURE PHYSICS, 2008, 34 (08) :665-671
[8]   THEORY AND APPLICATION OF MICROINDENTATION IN STUDIES OF GLIDE AND CRACKING IN SINGLE-CRYSTALS OF ELEMENTAL AND COMPOUND SEMICONDUCTORS [J].
FELTHAM, P ;
BANERJEE, R .
JOURNAL OF MATERIALS SCIENCE, 1992, 27 (06) :1626-1632
[9]   PERFORMANCE AND ANALYSIS OF RECORDING MICROHARDNESS TESTS [J].
FROHLICH, F ;
GRAU, P ;
GRELLMANN, W .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1977, 42 (01) :79-89
[10]  
Galanov B. A., 1983, PROBL PROCHN, V11, P93