Molecular Insights into Antimicrobial Resistance Traits of Commensal Human Gut Microbiota

被引:36
作者
Bag, Satyabrata [1 ]
Ghosh, Tarini Shankar [1 ]
Banerjee, Sayantan [2 ]
Mehta, Ojasvi [1 ]
Verma, Jyoti [1 ]
Dayal, Mayanka [1 ]
Desigamani, Anbumani [1 ]
Kumar, Pawan [1 ]
Saha, Bipasa [1 ]
Kedia, Saurabh [3 ]
Ahuja, Vineet [3 ]
Ramamurthy, Thandavarayan [1 ]
Das, Bhabatosh [1 ]
机构
[1] NCR Biotech Sci Cluster, Translat Hlth Sci & Technol Inst, Ctr Human Microbial Ecol, Mol Genet Lab, 3rd Milestone,Faridabad Gurgaon Expressway,POB 04, Faridabad 121001, Haryana, India
[2] All India Inst Med Sci, Div Infect Dis, Dept Med, New Delhi, India
[3] All India Inst Med Sci, Dept Gastroenterol, New Delhi, India
关键词
Gut microbiota; Genome; Mobile genetic elements; Horizontal gene transfer; Antibiotics; Antimicrobial resistance; ANTIBIOTIC-RESISTANCE; MECHANISMS; COMPETENCE; DNA;
D O I
10.1007/s00248-018-1228-7
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Antimicrobial resistance (AMR) among bacterial species that resides in complex ecosystems is a natural phenomenon. Indiscriminate use of antimicrobials in healthcare, livestock, and agriculture provides an evolutionary advantage to the resistant variants to dominate the ecosystem. Ascendency of resistant variants threatens the efficacy of most, if not all, of the antimicrobial drugs commonly used to prevent and/or cure microbial infections. Resistant phenotype is very common in enteric bacteria. The most common mechanisms of AMR are enzymatic modifications to the antimicrobials or their target molecules. In enteric bacteria, most of the resistance traits are acquired by horizontal gene transfer from closely or distantly related bacterial population. AMR traits are generally linked with mobile genetic elements (MGEs) and could rapidly disseminate to the bacterial species through horizontal gene transfer (HGT) from a pool of resistance genes. Although prevalence of AMR genes among pathogenic bacteria is widely studied in the interest of infectious disease management, the resistance profile and the genetic traits that encode resistance to the commensal microbiota residing in the gut of healthy humans are not well-studied. In the present study, we have characterized AMR phenotypes and genotypes of five dominant commensal enteric bacteria isolated from the gut of healthy Indians. Our study revealed that like pathogenic bacteria, enteric commensals are also multidrug-resistant. The genes encoding antibiotic resistance are physically linked with MGEs and could disseminate vertically to the progeny and laterally to the distantly related microbial species. Consequently, the AMR genes present in the chromosome of commensal gut bacteria could be a potential source of resistance functions for other enteric pathogens.
引用
收藏
页码:546 / 557
页数:12
相关论文
共 31 条
[1]   Molecular mechanisms of antibacterial multidrug resistance [J].
Alekshun, Michael N. ;
Levy, Stuart B. .
CELL, 2007, 128 (06) :1037-1050
[2]  
Antimicrobial Resistance, 2014, Review on Antimicrobial Resistance
[3]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[4]  
Bag S, 2017, GENOME ANNOUNC, V5
[5]   An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples [J].
Bag, Satyabrata ;
Saha, Bipasa ;
Mehta, Ojasvi ;
Anbumani, D. ;
Kumar, Naveen ;
Dayal, Mayanka ;
Pant, Archana ;
Kumar, Pawan ;
Saxena, Shruti ;
Allin, Kristine H. ;
Hansen, Torben ;
Arumugam, Manimozhiyan ;
Vestergaard, Henrik ;
Pedersen, Oluf ;
Pereira, Verima ;
Abraham, Philip ;
Tripathi, Reva ;
Wadhwa, Nitya ;
Bhatnagar, Shinjini ;
Prakash, Visvanathan Gnana ;
Radha, Venkatesan ;
Anjana, R. M. ;
Mohan, V. ;
Takeda, Kiyoshi ;
Kurakawa, Takashi ;
Nair, G. Balakrish ;
Das, Bhabatosh .
SCIENTIFIC REPORTS, 2016, 6
[6]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[7]   The Threat of Antimicrobial Resistance on the Human Microbiome [J].
Brinkac, Lauren ;
Voorhies, Alexander ;
Gomez, Andres ;
Nelson, Karen E. .
MICROBIAL ECOLOGY, 2017, 74 (04) :1001-1008
[8]   Tackling antibiotic resistance [J].
Bush, Karen ;
Courvalin, Patrice ;
Dantas, Gautam ;
Davies, Julian ;
Eisenstein, Barry ;
Huovinen, Pentti ;
Jacoby, George A. ;
Kishony, Roy ;
Kreiswirth, Barry N. ;
Kutter, Elizabeth ;
Lerner, Stephen A. ;
Levy, Stuart ;
Lewis, Kim ;
Lomovskaya, Olga ;
Miller, Jeffrey H. ;
Mobashery, Shahriar ;
Piddock, Laura J. V. ;
Projan, Steven ;
Thomas, Christopher M. ;
Tomasz, Alexander ;
Tulkens, Paul M. ;
Walsh, Timothy R. ;
Watson, James D. ;
Witkowski, Jan ;
Witte, Wolfgang ;
Wright, Gerry ;
Yeh, Pamela ;
Zgurskaya, Helen I. .
NATURE REVIEWS MICROBIOLOGY, 2011, 9 (12) :894-896
[9]   Fostering research into antimicrobial resistance in India [J].
Das, Bhabatosh ;
Chaudhuri, Susmita ;
Nair, G. Balakrish ;
Ramamurthy, Thandavarayan .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 358 :63-66
[10]   Origins and Evolution of Antibiotic Resistance [J].
Davies, Julian ;
Davies, Dorothy .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2010, 74 (03) :417-+