On the internal distance in the interlacement set

被引:19
作者
Cerny, Jiri [1 ]
Popov, Serguei [2 ]
机构
[1] Univ Vienna, A-1010 Vienna, Austria
[2] Univ Campinas UNICAMP, Campinas, SP, Brazil
关键词
Random interlacement; Internal distance; Shape theorem; Simple random walk; Capacity; PERCOLATION; THEOREM;
D O I
10.1214/EJP.v17-1936
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a shape theorem for the internal (graph) distance on the interlacement set I-u of the random interlacement model on Z(d), d >= 3. We provide large deviation estimates for the internal distance of distant points in this set, and use these estimates to study the internal distance on the range of a simple random walk on a discrete torus.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 13 条
[1]  
Alves OSM, 2002, ANN APPL PROBAB, V12, P533
[2]  
Antal P, 1996, ANN PROBAB, V24, P1036
[3]  
LAWLER GF, 1991, PROBABILITY ITS APPL
[4]  
Liggett TM, 1997, ANN PROBAB, V25, P71
[5]   AN IMPROVED SUBADDITIVE ERGODIC THEOREM [J].
LIGGETT, TM .
ANNALS OF PROBABILITY, 1985, 13 (04) :1279-1285
[6]   LARGE DEVIATIONS OF SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
NAGAEV, SV .
ANNALS OF PROBABILITY, 1979, 7 (05) :745-789
[7]   GEOMETRY OF THE RANDOM INTERLACEMENT [J].
Procaccia, Eviatar B. ;
Tykesson, Johan .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 :528-544
[8]  
Ráth B, 2012, ALEA-LAT AM J PROBAB, V9, P67
[9]   ON THE TRANSIENCE OF RANDOM INTERLACEMENTS [J].
Rath, Balazs ;
Sapozhnikov, Artem .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 :379-391
[10]  
Rath Balazs, 2011, ARXIV11095086