Higher-order finite difference schemes for the magnetic induction equations with resistivity

被引:13
作者
Koley, U. [1 ]
Mishra, S. [1 ]
Risebro, N. H. [1 ]
Svard, M. [1 ]
机构
[1] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
induction equation; magnetic resistivity; finite differences; SBP operators; MHD EQUATIONS; MAGNETOHYDRODYNAMICS; CONSTRAINT;
D O I
10.1093/imanum/drq030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we design high-order accurate and stable finite difference schemes for the initial-boundary-value problem associated with the magnetic induction equation with resistivity. We use summation-by-parts finite difference operators to approximate spatial derivatives and a simultaneous approximation term technique for implementing boundary conditions. The resulting schemes are shown to be energy stable. Various numerical experiments demonstrating both the stability and the high order of accuracy of the schemes are presented.
引用
收藏
页码:1173 / 1193
页数:21
相关论文
共 12 条
[1]  
Biskamp D., 1993, Nonlinear magnetohydrodynamics
[2]   THE EFFECT OF NONZERO-DEL.B ON THE NUMERICAL-SOLUTION OF THE MAGNETO-HYDRODYNAMIC EQUATIONS [J].
BRACKBILL, JU ;
BARNES, DC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (03) :426-430
[3]   Splitting based finite volume schemes for ideal MHD equations [J].
Fuchs, F. G. ;
Mishra, S. ;
Risebro, N. H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (03) :641-660
[4]   STABLE UPWIND SCHEMES FOR THE MAGNETIC INDUCTION EQUATION [J].
Fuchs, Franz G. ;
Karlsen, Kenneth H. ;
Mishra, Siddharta ;
Risebro, Nils H. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05) :825-852
[5]   Higher order finite difference schemes for the magnetic induction equations [J].
Koley, Ujjwal ;
Mishra, Siddhartha ;
Risebro, Nils Henrik ;
Svard, Magnus .
BIT NUMERICAL MATHEMATICS, 2009, 49 (02) :375-395
[6]   On stability of numerical schemes via frozen coefficients and the magnetic induction equations [J].
Mishra, Siddhartha ;
Svard, Magnus .
BIT NUMERICAL MATHEMATICS, 2010, 50 (01) :85-108
[7]   A solution-adaptive upwind scheme for ideal magnetohydrodynamics [J].
Powell, KG ;
Roe, PL ;
Linde, TJ ;
Gombosi, TI ;
De Zeeuw, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :284-309
[8]   On coordinate transformations for summation-by-parts operators [J].
Svärd, M .
JOURNAL OF SCIENTIFIC COMPUTING, 2004, 20 (01) :29-42
[9]   On the order of accuracy for difference approximations of initial-boundary value problems [J].
Svard, Magnus ;
Nordstrom, Jan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :333-352
[10]   Constraint-preserving upwind methods for multidimensional advection equations [J].
Torrilhon, M ;
Fey, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1694-1728