Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation

被引:1
作者
Zhao, Qianqian [1 ]
Yu, Jiang [2 ]
Wang, Cheng [3 ]
机构
[1] Hebei Univ Econ & Business, Sch Math & Stat, Shijiazhuang 050061, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai 200240, Peoples R China
[3] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2022年 / 32卷 / 14期
基金
中国国家自然科学基金;
关键词
Generalized Abel function; nontrivial limit cycle; bifurcation; Melnikov function; piecewise smooth function; PERIODIC-SOLUTIONS; NUMBER; GROWTH;
D O I
10.1142/S0218127422502169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we focus on the number of nontrivial limit cycles in a kind of piecewise smooth generalized Abel equation dx/dt = {x(p)/p -1 + sigma(2)(i=1) epsilon(i)(A(i)(-)(t)x(p) + B-i(-)(t) x(2p-1)), -1 <= t <= 0, x is an element of R,-x(p)/p-1 + sigma(2)(i=1) epsilon(i)(A(i)(+)(t)x(p) + B-i(+)(t) x(2p-1)), 0 <= t <= 1, x is an element of R,where p is an element of Z(+)\ {1}, A(1)(+) = a(10)(+/-) + a(11)(+/-)t, B-+/-(1) = b(10)(+/-) + b(11)(+/-)t, A(2)(+/-) = a(20)(+/- )+ a(21)(+/-)t, B-2(+/-) = b(20)(+/-) + b(21)(+/-)t and |epsilon| << 1. Under the condition b(11)(+) &NOTEQUexpressionL; 0, employing Melnikov functions of any order and using properties of Chebyshev systems, we prove that if p is odd, then the maximum number of nontrivial limit cycles bifurcating from the periodic annulus of the unperturbed system is 6 and it is attainable, and if p is even, then the maximum number is 3, and it can be attained too.
引用
收藏
页数:18
相关论文
共 22 条
[1]   Characterization of the Existence of Non-trivial Limit Cycles for Generalized Abel Equations [J].
Alvarez, M. J. ;
Bravo, J. L. ;
Fernandez, M. ;
Prohens, R. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
[2]   Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation [J].
Benardete, Diego M. ;
Noonburg, V. W. ;
Pollina, B. .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (03) :202-219
[3]   Wronskians and Linear Independence [J].
Bostan, Alin ;
Dumas, Philippe .
AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (08) :722-727
[4]  
Cherkas L.A., 1976, Differencial'nye Uravnenija, V12, P944
[5]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[6]   Iterative approximation of limit cycles for a class of Abel equations [J].
Fossas, Enric ;
Olm, Josep M. ;
Sira-Ramirez, Hebertt .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (23) :3159-3164
[7]   LIMIT-CYCLES FOR A CLASS OF ABEL EQUATIONS [J].
GASULL, A ;
LLIBRE, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) :1235-1244
[8]   Limit cycles for generalized Abel equations [J].
Gasull, Armengol ;
Guillamon, Antoni .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (12) :3737-3745
[9]  
Harko T, 2003, COMPUT MATH APPL, V46, P849, DOI 10.1016/S0898-1221(03)00290-6
[10]   TRAVELLING WAVE SOLUTIONS OF THE REACTION-DIFFUSION MATHEMATICAL MODEL OF GLIOBLASTOMA GROWTH: AN ABEL EQUATION BASED APPROACH [J].
Harko, Tiberiu ;
Mak, Man Kwong .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (01) :41-69