Strain-dependent luminescence and piezoelectricity in monolayer transition metal dichalcogenides

被引:8
作者
De Palma, Alex C. [1 ]
Cossio, Gabriel [1 ]
Jones, Kayleigh [2 ]
Quan, Jiamin [2 ]
Li, Xiaoqin [2 ]
Yu, Edward T. [1 ]
机构
[1] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2020年 / 38卷 / 04期
基金
美国国家科学基金会;
关键词
FIELD; MOS2; FILMS;
D O I
10.1116/6.0000251
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The modification of optical and electronic properties of transition metal dichalcogenides via mechanical deformation has been widely studied. Their ability to withstand large deformations before rupture has enabled large tunability of the bandgap, and further, the spatially varying strain has been shown to control the spatial distribution of the bandgap and lead to effects such as carrier funneling. Monolayer transition metal dichalcogenides exhibit a significant piezoelectric effect that could couple to a spatially inhomogeneous strain distribution to influence electronic and optical behavior. We investigate both experimentally and theoretically an example case of photoluminescence in structures with a strain distribution similar to that employed in single-photon emitters but generated here via nanoindentation. Using a mechanical model for strain induced by nanoindentation, we show that piezoelectricity can result in charge densities reaching 10(12)e/cm(2) and can generate electrostatic potential variations on the order of +/- 0.1V across the suspended monolayer. We analyze the implications of these results for luminescence and exciton transport in monolayer transition metal dichalcogenides with spatially varying strain.
引用
收藏
页数:9
相关论文
共 61 条
[41]   Integration of subwavelength optical nanostructures for improved antireflection performance of mechanically flexible GaAs solar cells fabricated by epitaxial lift-off [J].
Li, Xiaohan ;
Li, Ping-Chun ;
Ji, Li ;
Stender, Christopher ;
Tatavarti, Sudersena Rao ;
Sablon, Kimberly ;
Yu, Edward T. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 :567-572
[42]   Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2 [J].
Lloyd, David ;
Liu, Xinghui ;
Christopher, Jason W. ;
Cantley, Lauren ;
Wadehra, Anubhav ;
Kim, Brian L. ;
Goldberg, Bennett B. ;
Swan, Anna K. ;
Bunch, J. Scott .
NANO LETTERS, 2016, 16 (09) :5836-5841
[43]   Dissociation of two-dimensional excitons in monolayer WSe2 [J].
Massicotte, Mathieu ;
Vialla, Fabien ;
Schmidt, Peter ;
Lundeberg, Mark B. ;
Latini, Simone ;
Haastrup, Sten ;
Danovich, Mark ;
Davydovskaya, Diana ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Fal'ko, Vladimir I. ;
Thygesen, Kristian S. ;
Pedersen, Thomas G. ;
Koppens, Frank H. L. .
NATURE COMMUNICATIONS, 2018, 9
[44]   Large-scale quantum-emitter arrays in atomically thin semiconductors [J].
Palacios-Berraquero, Carmen ;
Kara, Dhiren M. ;
Montblanch, Alejandro R. -P. ;
Barbone, Matteo ;
Latawiec, Pawel ;
Yoon, Duhee ;
Ott, Anna K. ;
Loncar, Marko ;
Ferrari, Andrea C. ;
Atature, Mete .
NATURE COMMUNICATIONS, 2017, 8
[45]   Effects of strain on band structure and effective masses in MoS2 [J].
Peelaers, H. ;
Van de Walle, C. G. .
PHYSICAL REVIEW B, 2012, 86 (24)
[46]   Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics [J].
Qi, Junjie ;
Lan, Yann-Wen ;
Stieg, Adam Z. ;
Chen, Jyun-Hong ;
Zhong, Yuan-Liang ;
Li, Lain-Jong ;
Chen, Chii-Dong ;
Zhang, Yue ;
Wang, Kang L. .
NATURE COMMUNICATIONS, 2015, 6
[47]   Quantum Calligraphy: Writing Single-Photon Emitters in a Two-Dimensional Materials Platform [J].
Rosenberger, Matthew R. ;
Dass, Chandriker Kavir ;
Chuang, Hsun-Jen ;
Sivaram, Saujan V. ;
McCreary, Kathleen M. ;
Hendrickson, Joshua R. ;
Jonker, Berend T. .
ACS NANO, 2019, 13 (01) :904-912
[48]   Calibration of rectangular atomic force microscope cantilevers [J].
Sader, JE ;
Chon, JWM ;
Mulvaney, P .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (10) :3967-3969
[49]  
Schwerin E., 1929, Z. Angew. Math. Mech, V9, P482, DOI DOI 10.1002/ZAMM.19290090609