Rational solitons of wave resonant-interaction models

被引:147
作者
Degasperis, Antonio [1 ]
Lombardo, Sara [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, Ist Nazl Fis Nucl, I-00185 Rome, Italy
[2] Northumbria Univ, Newcastle Upon Tyne, Tyne & Wear, England
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
EQUATIONS;
D O I
10.1103/PhysRevE.88.052914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Integrable models of resonant interaction of two or more waves in 1+1 dimensions are known to be of applicative interest in several areas. Here we consider a system of three coupled wave equations which includes as special cases the vector nonlinear Schrodinger equations and the equations describing the resonant interaction of three waves. The Darboux-Dressing construction of soliton solutions is applied under the condition that the solutions have rational, or mixed rational-exponential, dependence on coordinates. Our algebraic construction relies on the use of nilpotent matrices and their Jordan form. We systematically search for all bounded rational (mixed rational-exponential) solutions and find a broad family of such solutions of the three wave resonant interaction equations.
引用
收藏
页数:16
相关论文
共 33 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]   SOLITONS AND RATIONAL SOLUTIONS OF NON-LINEAR EVOLUTION EQUATIONS [J].
ABLOWITZ, MJ ;
SATSUMA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2180-2186
[3]   Rogue waves and rational solutions of the Hirota equation [J].
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2010, 81 (04)
[4]   Rogue waves, rational solutions, the patterns of their zeros and integral relations [J].
Ankiewicz, Adrian ;
Clarkson, Peter A. ;
Akhmediev, Nail .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (12)
[5]  
[Anonymous], 1991, What is Integrability
[6]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[7]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[8]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[9]   UNIVERSALITY AND INTEGRABILITY OF THE NONLINEAR EVOLUTION PDES DESCRIBING N-WAVE INTERACTIONS [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) :28-40
[10]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)