Symmetry groups and spiral wave solution of a wave propagation equation

被引:2
作者
Zhang, QJ [1 ]
Qu, CZ
机构
[1] Xidian Univ, Sch Sci, Xian 710071, Peoples R China
[2] NW Univ Xian, Inst Modern Phys, Xian 710069, Peoples R China
来源
CHINESE PHYSICS | 2002年 / 11卷 / 03期
关键词
symmetry group; optimal system; wave propagation; spiral wave;
D O I
10.1088/1009-1963/11/3/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a third-order nonlinear evolution equation, which can be transformed to the modified KdV equation, using the Lie symmetry method. The Lie point symmetries and the one-dimensional optimal system of the symmetry algebras are determined. Those symmetries are some types of nonlocal symmetries or hidden symmetries of the modified KdV equation. The group-invariant solutions, particularly the travelling wave and spiral wave solutions, are discussed in detail, and a type of spiral wave solution which is smooth in the origin is obtained.
引用
收藏
页码:207 / 212
页数:6
相关论文
共 23 条
[1]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[2]   EXACT SOLVABILITY OF THE MULLINS NONLINEAR DIFFUSION-MODEL OF GROOVE DEVELOPMENT [J].
BROADBRIDGE, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1648-1652
[3]   Symmetry groups and separation of variables of a class of nonlinear diffusion-convection equations [J].
Chou, KS ;
Qu, CZ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (35) :6271-6286
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   N-LOOP SOLITONS AND THEIR LINK WITH THE COMPLEX HARRY-DYM EQUATION [J].
DMITRIEVA, LA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (24) :8197-8205
[6]  
FAN EG, 1997, ACTA PHYS SINICA, V46, P1254
[7]   NONLINEAR-INTERACTION OF TRAVELING WAVES OF NONINTEGRABLE EQUATIONS [J].
FOKAS, AS ;
LIU, QM .
PHYSICAL REVIEW LETTERS, 1994, 72 (21) :3293-3296
[8]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[9]   A LOOP SOLITON PROPAGATING ALONG A STRETCHED ROPE [J].
KONNO, K ;
ICHIKAWA, YH ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (03) :1025-1026
[10]   SOME REMARKABLE PROPERTIES OF 2 LOOP SOLITON-SOLUTIONS [J].
KONNO, K ;
JEFFREY, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (01) :1-3