Distributed Spectrum Estimation for Small Cell Networks Based on Sparse Diffusion Adaptation

被引:44
作者
Di Lorenzo, Paolo [1 ]
Barbarossa, Sergio [1 ]
Sayed, Ali H. [2 ]
机构
[1] Sapienza Univ Rome, DIET Dept, I-00184 Rome, Italy
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Distributed spectrum estimation; small-cell networks; sparse diffusion adaptation; LMS; RLS;
D O I
10.1109/LSP.2013.2287373
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The goal of this letter is to propose an adaptive and distributed approach to cooperative sensing for wireless small cell networks. The method uses a basis expansion model of the power spectral density (PSD) to be estimated, and exploits spectral sparsity to improve estimation accuracy and adaptation capabilities. An estimator of the model coefficients is developed based on sparse diffusion strategies, which are able to exploit and track sparsity while at the same time processing data in real-time and in a fully decentralized manner. Simulation results illustrate the advantages of the proposed sparsity-aware strategies for cooperative spectrum sensing applications.
引用
收藏
页码:1261 / 1265
页数:5
相关论文
共 23 条
  • [1] Online Adaptive Estimation of Sparse Signals: Where RLS Meets the l1-Norm
    Angelosante, Daniele
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3436 - 3447
  • [2] [Anonymous], IEEE SIGNAL PROCESSI
  • [3] Ariananda D., 2012, P IEEE AS C SIGN SYS, P30
  • [4] Axell E., 2012, IEEE SIGNAL PROCESS
  • [5] SPARLS: The Sparse RLS Algorithm
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (08) : 4013 - 4025
  • [6] Distributed Spectrum Sensing for Cognitive Radio Networks by Exploiting Sparsity
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1847 - 1862
  • [7] Bertsekas D. P., 1997, Parallel and Distributed Computation: Numerical Methods
  • [8] Brillinger D. R., 1981, Time Series: Data Analysis and Theory
  • [9] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905
  • [10] Distributed Detection Over Adaptive Networks Using Diffusion Adaptation
    Cattivelli, Federico S.
    Sayed, Ali H.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) : 1917 - 1932