Giant Suppression of Photobleaching for Single Molecule Detection via the Purcell Effect

被引:69
作者
Cang, Hu [1 ,2 ]
Liu, Yongmin [1 ,3 ,4 ]
Wang, Yuan [1 ]
Yin, Xiaobo [1 ,5 ]
Zhang, Xiang [1 ,5 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA
[2] Salk Inst Biol Studies, Waitt Adv Biophoton Ctr, La Jolla, CA 92037 USA
[3] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[4] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
Nano-optics; single-molecule fluorescence spectroscopy; plasmonics; SPONTANEOUS EMISSION; RAMAN-SCATTERING; FLUORESCENCE; FIELD; ANTENNAS;
D O I
10.1021/nl403047m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report giant suppression of photobleaching and a prolonged lifespan of single fluorescent molecules via the Purcell effect in plasmonic nanostructures. The plasmonic structures enhance the spontaneous emission of excited fluorescent molecules, reduce the probability of activating photochemical reactions that destroy the molecules, and hence suppress the bleaching. Experimentally, we observe up to a 1000-fold increase in the total number of photons that we can harvest from a single fluorescent molecule before it bleaches. This approach demonstrates the potential of using the Purcell effect to manipulate photochemical reactions at the subwavelength scale.
引用
收藏
页码:5949 / 5953
页数:5
相关论文
共 43 条
[11]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933
[12]   PHOTOPHYSICS AND PHOTOCHEMISTRY NEAR SURFACES AND SMALL PARTICLES [J].
GERSTEN, JI ;
NITZAN, A .
SURFACE SCIENCE, 1985, 158 (1-3) :165-189
[13]   Plasmonics: An Emerging Field Fostered by Nano Letters [J].
Halas, Naomi J. .
NANO LETTERS, 2010, 10 (10) :3816-3822
[14]   Enhancing the active lifetime of luminescent semiconducting polymers via doping with metal nanoshells [J].
Hale, GD ;
Jackson, JB ;
Shmakova, OE ;
Lee, TR ;
Halas, NJ .
APPLIED PHYSICS LETTERS, 2001, 78 (11) :1502-1504
[15]   IMPROVED GREEN FLUORESCENCE [J].
HEIM, R ;
CUBITT, AB ;
TSIEN, RY .
NATURE, 1995, 373 (6516) :663-664
[16]   QUANTUM EFFICIENCY INDEPENDENCE OF TIME INTEGRATED EMISSION FROM A FLUORESCENT MOLECULE [J].
HIRSCHFELD, T .
APPLIED OPTICS, 1976, 15 (12) :3135-3139
[17]   Near-field manipulation of spectroscopic selection rules on the nanoscale [J].
Jain, Prashant K. ;
Ghosh, Debraj ;
Baer, Roi ;
Rabani, Eran ;
Alivisatos, A. Paul .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (21) :8016-8019
[18]   Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas [J].
Kang, Ju-Hyung ;
Kim, Kipom ;
Ee, Ho-Seok ;
Lee, Yong-Hee ;
Yoon, Tae-Young ;
Seo, Min-Kyo ;
Park, Hong-Gyu .
NATURE COMMUNICATIONS, 2011, 2
[19]   Plasmonic Sinks for the Selective Removal of Long-Lived States [J].
Kena-Cohen, Stephane ;
Wiener, Aeneas ;
Sivan, Yonatan ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Horsfield, Andrew ;
Maier, Stefan A. .
ACS NANO, 2011, 5 (12) :9958-9965
[20]   Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna [J].
Kinkhabwala, Anika ;
Yu, Zongfu ;
Fan, Shanhui ;
Avlasevich, Yuri ;
Muellen, Klaus ;
Moerner, W. E. .
NATURE PHOTONICS, 2009, 3 (11) :654-657