State-of-charge (SOC) estimation using T-S Fuzzy Neural Network for Lithium Iron Phosphate Battery

被引:0
|
作者
Song, Shuxiang [1 ]
Wei, Zhenhan [1 ]
Xia, Haiying [1 ]
Cen, Mingcan [1 ]
Cai, Chaobo [1 ]
机构
[1] Guangxi Normal Univ, Coll Elect Engn, Guilin, Guangxi, Peoples R China
来源
2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018) | 2018年
关键词
Electric vehicle; lithium battery; state of charge (SOC); T-S Fuzzy Neural Network; ION BATTERIES;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Although lithium battery has the characteristics of high charge and discharge rate and energy density, its chemical activity is very high. Since the SOC of lithium battery cannot be directly tested, this paper presents a method of estimating the SOC of the battery by the T-S fuzzy neural network regression. Firstly, a T-S fuzzy neural network regression model was constructed. Take the battery voltage, battery current and battery temperature as the training input of the model, and take the corresponding SOC as the training output of the model. And then, used the T-S fuzzy neural network algorithm for model training. Finally, the training model was applied to the battery SOC estimation. The experimental results show that this method can estimate the SOC effectively, improve the estimation accuracy, and has high computational efficiency. This model may provide a theoretical reference for the model construction of future battery charge estimation system.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] State-of-Charge (SOC) and State-of-Health (SOH) Estimation Methods in Battery Management Systems for Electric Vehicles
    Kassim, Mohamed Rawidean Mohd
    Jamil, Wan Adil Wan
    Sabri, Roslee Mohd
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING (ICOCO), 2021, : 91 - 96
  • [22] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [23] State of Charge (SOC) Estimation for Lithium-Ion Battery Cell Using Extended Kalman Filter
    Ucuncu, Murat
    Altindag, Arda
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 503 - 509
  • [24] Online State-of-Charge and State-of-Health Estimation of Lithium Battery Based on Equivalent Circuit Model
    Kung, Chung-Chun
    Chang, Shuo-Chieh
    Chen, Ti-Hung
    NEW TRENDS ON SYSTEM SCIENCES AND ENGINEERING, 2015, 276 : 433 - 446
  • [25] State of charge estimation of high power lithium iron phosphate cells
    Huria, T.
    Ludovici, G.
    Lutzemberger, G.
    JOURNAL OF POWER SOURCES, 2014, 249 : 92 - 102
  • [26] State-of-Charge Estimation of Lithium-ion Battery Using Multi-State Estimate Technic for Electric Vehicle Applications
    Li Yong
    Wang Lifang
    Liao Chenglin
    Wang Liye
    Xu Dongping
    2013 9TH IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2013, : 316 - 320
  • [27] State-of-charge Estimation of Lithium-ion Polymer Battery Based on Sliding Mode Observer
    Mao Jun
    Zhao Linhui
    Lin Yurong
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 269 - 273
  • [28] A Novel State-of-Charge Estimation Method for Lithium-Ion Battery Pack of Electric Vehicles
    Chen, Zheng
    Xia, Bing
    Mi, Chunting Chris
    2015 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2015,
  • [29] Research on SOC estimation of lithium battery based on GWO-BP neural network
    Li, Zhenwei
    Liu, Dong
    Lu, Fan
    Heng, Xidan
    Guo, Yudi
    Jiang, Qilong
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 506 - 510
  • [30] State of Charge (SOC) and State of Health (SOH) Estimation on Lithium Polymer Battery via Kalman Filter
    Topan, Paris Ali
    Ramadan, M. Nisvo
    Fathoni, Ghufron
    Cahyadi, Adha Imam
    Wahyunggoro, Oyas
    2016 2ND INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY-COMPUTER (ICST), 2016,