A High-Order Difference Scheme for the Generalized Cattaneo Equation

被引:28
作者
Vong, Seak-Weng [1 ]
Pang, Hong-Kui [2 ]
Jin, Xiao-Qing [1 ]
机构
[1] Univ Macau, Dept Math, Taipa, Peoples R China
[2] Jiangsu Normal Univ, Sch Math Sci, Xuzhou, Peoples R China
关键词
Fractional Cattaneo equation; L-1; approximation; compact finite difference; stability; convergence; VOLTERRA INTEGRODIFFERENTIAL EQUATIONS; FRACTIONAL DIFFUSION EQUATION; TRANSPORT; APPROXIMATIONS; STABILITY;
D O I
10.4208/eajam.110312.240412a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A high-order finite difference scheme for the fractional Cattaneo equation is investigated. The L-1 approximation is invoked for the time fractional part, and a compact difference scheme is applied to approximate the second-order space derivative. The stability and convergence rate are discussed in the maximum norm by the energy method. Numerical examples are provided to verify the effectiveness and accuracy of the proposed difference scheme.
引用
收藏
页码:170 / 184
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   The generalized Cattaneo equation for the description of anomalous transport processes [J].
Compte, A ;
Metzler, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (21) :7277-7289
[4]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[5]   A compact difference scheme for the fractional diffusion-wave equation [J].
Du, R. ;
Cao, W. R. ;
Sun, Z. Z. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) :2998-3007
[6]   A compact finite difference scheme for the fractional sub-diffusion equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (03) :586-595
[7]   Explicit and implicit finite difference schemes for fractional Cattaneo equation [J].
Ghazizadeh, H. R. ;
Maerefat, M. ;
Azimi, A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7042-7057
[8]   From the quantum random walk to classical mesoscopic diffusion in crystalline solids [J].
Godoy, S ;
GarciaColin, LS .
PHYSICAL REVIEW E, 1996, 53 (06) :5779-5785
[9]   A mathematical model and a numerical model for hyperbolic mass transport in compressible flows [J].
Gomez, Hector ;
Colominas, Ignasi ;
Navarrina, Fermin ;
Casteleiro, Manuel .
HEAT AND MASS TRANSFER, 2008, 45 (02) :219-226
[10]  
Jou D., 2001, EXTENDED IRREVERSIBL