The influence of foam morphology of multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites on electrical conductivity

被引:94
作者
Minh-Phuong Tran [1 ]
Detrembleur, Christophe [1 ]
Alexandre, Michael [1 ]
Jerome, Christine [1 ]
Thomassin, Jean-Michel [1 ]
机构
[1] Univ Liege ULg, Ctr Educ & Res Macromol CERM, Dept Chem, B-4000 Liege, Belgium
关键词
Carbon nanotubes; Foams; Supercritical CO2; LAYERED SILICATE NANOCOMPOSITES; NANOTUBE-BASED COMPOSITES; MICROCELLULAR POLYMERS; POLY(L-LACTIC ACID); ASPECT RATIO; DIOXIDE; CO2; MICROTUBULES; BLENDS; AGENT;
D O I
10.1016/j.polymer.2013.03.053
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymer/multi-walled carbon nanotubes (PMMA/MWNTs) nanocomposites foams are widely investigated during the last decade thanks to their potential applications as electromagnetic interferences shielding (EMI) materials. Electrical conductivity of the nanocomposite is a key parameter for these applications. In the frame of this work, we aim at establishing relationships between the foams morphology and their electrical conductivity. We therefore first design nanocomposite foams of various morphologies using supercritical carbon dioxide (scCO(2)) as physical foaming agent. The nanocomposites based on poly(methyl methacrylate) (PMMA) and different carbon nanotubes loadings are prepared by melt-mixing and foamed by scCO(2) in various conditions of pressure, temperature and soaking time. The influence of these foaming conditions on the morphology of the foams (volume expansion, pore size, cell density, cell-wall thickness) is discussed. After measuring the electrical conductivity of the foams, we establish structure/properties relationships that are essential for further optimizations of the materials for the targeted application. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3261 / 3270
页数:10
相关论文
共 50 条
[1]   Electrical conductivity of polyurethane/MWCNT nanocomposite foams [J].
Athanasopoulos, N. ;
Baltopoulos, A. ;
Matzakou, M. ;
Vavouliotis, A. ;
Kostopoulos, V. .
Polymer Composites, 2012, 33 (08) :1302-1312
[2]   Modeling the barrier properties of polymer-layered silicate nanocomposites [J].
Bharadwaj, RK .
MACROMOLECULES, 2001, 34 (26) :9189-9192
[3]  
Chen L, 2008, PMSE PREPR, V99, P642
[4]   Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification [J].
Chen, Limeng ;
Goren, Behic K. ;
Ozisik, Rahmi ;
Schadler, Linda S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (02) :190-196
[5]   An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams [J].
Chen, Limeng ;
Schadler, Linda S. ;
Ozisik, Rahmi .
POLYMER, 2011, 52 (13) :2899-2909
[6]   The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams [J].
Chen, Limeng ;
Ozisik, Rahmi ;
Schadler, Linda S. .
POLYMER, 2010, 51 (11) :2368-2375
[7]   IMPACT TOUGHENING OF POLYCARBONATE BY MICROCELLULAR FOAMING [J].
COLLIAS, DI ;
BAIRD, DG ;
BORGGREVE, RJM .
POLYMER, 1994, 35 (18) :3978-3983
[8]   Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes [J].
Demczyk, BG ;
Wang, YM ;
Cumings, J ;
Hetman, M ;
Han, W ;
Zettl, A ;
Ritchie, RO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2) :173-178
[9]   SIZE EFFECT IN HETEROGENEOUS NUCLEATION [J].
FLETCHER, NH .
JOURNAL OF CHEMICAL PHYSICS, 1958, 29 (03) :572-576
[10]   Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites [J].
Fragneaud, B. ;
Masenelli-Varlot, K. ;
Gonzalez-Montiel, A. ;
Terrones, M. ;
Cavaille, J. Y. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (15-16) :3265-3271