Second Hankel determinant for certain class of bi-univalent functions defined by Chebyshev polynomials

被引:16
|
作者
Orhan, H. [1 ]
Magesh, N. [2 ]
Balaji, V. K. [3 ]
机构
[1] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkey
[2] Govt Arts Coll Men, Postgrad & Res Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] LN Govt Coll, Dept Math, Chennai, Tamil Nadu, India
关键词
Analytic functions; bi-univalent functions; coefficient bounds; Chebyshev polynomial; second Hankel determinant; FEKETE-SZEGO PROBLEM; INITIAL COEFFICIENT BOUNDS; GENERAL SUBCLASS; CONVEX FUNCTIONS; STARLIKE;
D O I
10.1142/S1793557119500177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain an upper bound estimate for the second Hankel determinant of a subclass N-sigma(mu) (lambda, t) of analytic bi-univalent function class sigma which is associated with Chebyshev polynomials in the open unit disk.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] (p, g)-CHEBYSHEV POLYNOMIALS AND THEIR APPLICATIONS TO BI-UNIVALENT FUNCTIONS
    Amourah, A.
    Abdelkarim, H.
    Alelaumi, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 481 - 486
  • [22] Second Hankel Determinant of Certain Subclasses of Bi-univalent Functions by Means of Differential Subordination
    Laxmi, K. Rajya
    Sharma, R. Bharavi
    RECENT DEVELOPMENTS IN MATHEMATICAL ANALYSIS AND COMPUTING, 2019, 2095
  • [23] A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind
    Yousef, Feras
    Alroud, Somaia
    Illafe, Mohamed
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 329 - 339
  • [24] SECOND HANKEL DETERMINANT FOR A GENERAL SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Altinkaya, Sahsene
    Yalcin, Sibel
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 7 (01): : 98 - 104
  • [25] Fekete-Szego problem and Second Hankel Determinant for a class of bi-univalent functions
    Magesh, N.
    Yamini, J.
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (01): : 141 - 157
  • [26] Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator
    Al-Shbeil, Isra
    Shaba, Timilehin Gideon
    Catas, Adriana
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [27] A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator
    Breaz, Daniel
    Orhan, Halit
    Cotirla, Luminita-Ioana
    Arikan, Hava
    AXIOMS, 2023, 12 (02)
  • [28] The second Hankel determinant for subclasses of Bi-univalent functions associated with a nephroid domain
    Hari Mohan Srivastava
    Gangadharan Murugusundaramoorthy
    Teodor Bulboacă
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [29] Second Hankel Determinant and Fekete-Szegö Problem for a New Class of Bi-Univalent Functions Involving Euler Polynomials
    Gebur, Semh Kadhim
    Atshan, Waggas Galib
    SYMMETRY-BASEL, 2024, 16 (05):
  • [30] Construction of the second Hankel determinant for a new subclass of bi-univalent functions
    Altinkaya, Sahsene
    Yalcin, Sibel
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 2876 - 2884