Fuzzy inference system (FIS)-long short-term memory (LSTM) network for electromyography (EMG) signal analysis

被引:8
|
作者
Suppiah, Ravi [1 ]
Kim, Noori [1 ,2 ,3 ]
Sharma, Anurag [1 ,2 ]
Abidi, Khalid [1 ,2 ]
机构
[1] Newcastle Univ Upon Tyne, Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, England
[2] Newcastle Univ Singapore, Elect Power Engn, Singapore 609607, Singapore
[3] Purdue Univ, Purdue Polytech Inst, W Lafayette, IN 47907 USA
关键词
fuzzy inference system; fuzzy logic; long short-term memory network; electromyography; CLASSIFICATION; RECOGNITION; ACTIVATION; DIAGNOSIS; LOGIC;
D O I
10.1088/2057-1976/ac9e04
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A wide range of application domains,s such as remote robotic control, rehabilitation, and remote surgery, require capturing neuromuscular activities. The reliability of the application is highly dependent on an ability to decode intentions accurately based on captured neuromuscular signals. Physiological signals such as Electromyography (EMG) and Electroencephalography (EEG) generated by neuromuscular activities contain intrinsic patterns for users' particular actions. Such actions can generally be classified as motor states, such as Forward, Reverse, Hand-Grip, and Hand-Release. To classify these motor states truthfully, the signals must be captured and decoded correctly. This paper proposes a novel classification technique using a Fuzzy Inference System (FIS) and a Long Short-Term Memory (LSTM) network to classify the motor states based on EMG signals. Existing EMG signal classification techniques generally rely on features derived from data captured at a specific time instance. This typical approach does not consider the temporal correlation of the signal in the entire window. This paper proposes an LSTM with a Fuzzy Logic method to classify four major hand movements: forward, reverse, raise, and lower. Features associated with the pattern generated throughout the motor state movement were extracted by exploring published data within a given time window. The classification results can achieve a 91.3% accuracy for the 4-way action (Forward/Reverse/GripUp/RelDown) and 95.1% (Forward/Reverse Action) and 96.7% (GripUp/RelDown action) for 2-way actions. The proposed mechanism demonstrates high-level, human-interpretable results that can be employed in rehabilitation or medical-device industries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network
    Long, Xiaoxu
    Wang, Jiandong
    Gong, Shihong
    Li, Guangyong
    Ju, Hui
    IRRIGATION AND DRAINAGE, 2022, 71 (04) : 855 - 881
  • [2] Fuzzy-based weighting long short-term memory network for demand forecasting
    Imani, Maryam
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (01): : 435 - 460
  • [3] Fuzzy-based weighting long short-term memory network for demand forecasting
    Maryam Imani
    The Journal of Supercomputing, 2023, 79 : 435 - 460
  • [4] Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap
    Zhuoqi Wang
    Yuan Si
    Haibo Chu
    Water Resources Management, 2022, 36 : 4575 - 4590
  • [5] Daily Streamflow Prediction and Uncertainty Using a Long Short-Term Memory (LSTM) Network Coupled with Bootstrap
    Wang, Zhuoqi
    Si, Yuan
    Chu, Haibo
    WATER RESOURCES MANAGEMENT, 2022, 36 (12) : 4575 - 4590
  • [6] A model for new media data mining and analysis in online English teaching using long short-term memory (LSTM) network
    Chen, Chen
    Aleem, Muhammad
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [7] Short-term Load Forecasting of Distribution Network Based on Combination of Siamese Network and Long Short-term Memory Network
    Ge L.
    Zhao K.
    Sun Y.
    Wang Y.
    Niu F.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (23): : 41 - 50
  • [8] Estimating finger joint angles on surface EMG using Manifold Learning and Long Short-Term Memory with Attention mechanism
    Avian, Cries
    Prakosa, Setya Widyawan
    Faisal, Muhamad
    Leu, Jenq-Shiou
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [9] Arabic Language Opinion Mining Based on Long Short-Term Memory (LSTM)
    Setyanto, Arief
    Laksito, Arif
    Alarfaj, Fawaz
    Alreshoodi, Mohammed
    Kusrini
    Oyong, Irwan
    Hayaty, Mardhiya
    Alomair, Abdullah
    Almusallam, Naif
    Kurniasari, Lilis
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [10] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)