CONVOLUTION-IN-TIME APPROXIMATIONS OF TIME DOMAIN BOUNDARY INTEGRAL EQUATIONS

被引:15
|
作者
Davies, Penny J. [1 ]
Duncan, Dugald B. [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[2] Heriot Watt Univ, Dept Math, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
convolution quadrature; Volterra integral equations; time-dependent boundary integral equations; DISCRETIZATION; QUADRATURE; MULTISTEP;
D O I
10.1137/120881907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new temporal approximation scheme for the boundary integral formulation of time-dependent scattering problems which can be combined with either collocation or Galerkin approximation in space. It uses the backward-in-time framework introduced in [P. J. Davies and D. B. Duncan, Convolution Spline Approximations of Volterra Integral Equations, www.mathstat.strath.ac.uk/research/reports/2012 (2012)] with new temporal basis functions which share some properties with radial basis function multiquadrics. We analyze the stability and convergence properties of the new scheme for associated Volterra integral equations and perform extensive numerical tests for scattering from flat polygonal plates and open and closed cubes and spheres, which demonstrate effectiveness of this approach.
引用
收藏
页码:B43 / B61
页数:19
相关论文
共 50 条
  • [21] Integral Accuracy and Experimental Evidence for the Stability of Time Domain Integral Equations
    Li, Jielin
    Weile, Daniel S.
    Hopkins, David A.
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [22] A convolution quadrature method for acoustic time domain boundary element method
    Zhu Y.
    Wu H.
    Sun R.
    Jiang W.
    Shengxue Xuebao/Acta Acustica, 2023, 48 (06): : 1218 - 1226
  • [23] TIME DOMAIN APPROXIMATIONS IN THE SOLUTION OF FIELDS BY TIME DOMAIN DIAKOPTICS
    JOHNS, PB
    AKHTARZAD, K
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (09) : 1361 - 1373
  • [24] MODELING OF DYNAMIC CRACK-PROPAGATION USING TIME-DOMAIN BOUNDARY INTEGRAL-EQUATIONS
    KOLLER, MG
    BONNET, M
    MADARIAGA, R
    WAVE MOTION, 1992, 16 (04) : 339 - 366
  • [25] Efficient solution of time-domain boundary integral equations arising in sound-hard scattering
    Veit, Alexander
    Merta, Michal
    Zapletal, Jan
    Lukas, Dalibor
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (05) : 430 - 449
  • [26] On a way to save memory when solving time domain boundary integral equations for acoustic and vibroacoustic applications
    Thirard, Christophe
    Parot, Jean-Marc
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 744 - 753
  • [27] TIME-DOMAIN BOUNDARY INTEGRAL METHODS IN LINEAR THERMOELASTICITY
    Hsiao, George C.
    Sanchez-Vizuet, Tonatiuh
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2463 - 2490
  • [28] An alternative implementation of time domain adaptive integral method for surface integral equations
    Xin-Yi, Ma
    Dang-Wei, Wang
    Yi, Su
    Jei, Sheng
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2008, 50 (07) : 1819 - 1822
  • [29] Explicit Solution of Calderon Preconditioned Time Domain Integral Equations
    Ulku, H. Arda
    Bagci, Hakan
    Michielssen, Eric
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 39 - +
  • [30] Integral equations in time domain for electromagnetic fields of waveguide structures
    Nerukh, A
    Benson, T
    MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 198 - 200