CONVOLUTION-IN-TIME APPROXIMATIONS OF TIME DOMAIN BOUNDARY INTEGRAL EQUATIONS

被引:15
|
作者
Davies, Penny J. [1 ]
Duncan, Dugald B. [2 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
[2] Heriot Watt Univ, Dept Math, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2013年 / 35卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
convolution quadrature; Volterra integral equations; time-dependent boundary integral equations; DISCRETIZATION; QUADRATURE; MULTISTEP;
D O I
10.1137/120881907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new temporal approximation scheme for the boundary integral formulation of time-dependent scattering problems which can be combined with either collocation or Galerkin approximation in space. It uses the backward-in-time framework introduced in [P. J. Davies and D. B. Duncan, Convolution Spline Approximations of Volterra Integral Equations, www.mathstat.strath.ac.uk/research/reports/2012 (2012)] with new temporal basis functions which share some properties with radial basis function multiquadrics. We analyze the stability and convergence properties of the new scheme for associated Volterra integral equations and perform extensive numerical tests for scattering from flat polygonal plates and open and closed cubes and spheres, which demonstrate effectiveness of this approach.
引用
收藏
页码:B43 / B61
页数:19
相关论文
共 50 条