Optimal binary subspace codes of length 6, constant dimension 3 and minimum subspace distance 4

被引:30
作者
Honold, Thomas [1 ]
Kiermaier, Michael [2 ]
Kurz, Sascha [2 ]
机构
[1] Zhejiang Univ, Dept Informat & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
来源
TOPICS IN FINITE FIELDS | 2015年 / 632卷
关键词
Subspace code; network coding; partial spread; PARTIAL SPREADS; DESIGNS; SPACES;
D O I
10.1090/conm/632/12627
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the maximum size of a binary subspace code of packet length v = 6, minimum subspace distance d = 4, and constant dimension k = 3 is M = 77; in Finite Geometry terms, the maximum number of planes in PG(5, 2) mutually intersecting in at most a point is 77. Optimal binary (v, M, d; k) = (6, 77, 4; 3) subspace codes are classified into 5 isomorphism types, and a computer-free construction of one isomorphism type is provided. The construction uses both geometry and finite fields theory and generalizes to any q, yielding a new family of q-ary (6, q(6) 2q(2) 2q 1,4; 3) subspace codes.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 2004, CLASSIFICATION PARTI
[2]  
[Anonymous], 1894, Jahresbericht der Deustschen MathematikerVereinigung
[3]   PARTIAL SPREADS IN FINITE PROJECTIVE SPACES AND PARTIAL DESIGNS [J].
BEUTELSPACHER, A .
MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (03) :211-229
[4]   A characterization of Grassmann and attenuated spaces as (0, α)-geometries [J].
Bonoli, G ;
Melone, N .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (05) :489-498
[5]  
De Clerck H., 1995, HDB INCIDENCE GEOMET, P433
[7]  
Eisfeld J., 2000, LECT NOTES
[8]  
Etzion T., 2013, ARXIV13056126CSIT
[9]   Codes and Designs Related to Lifted MRD Codes (vol 59, pg 1004, 2013) [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) :4730-4730
[10]   Codes and Designs Related to Lifted MRD Codes [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1004-1017