Poly(ethylene oxide)-Based Composite Electrolyte with Lithium-Doped High-Entropy Oxide Ceramic Enabled Robust Solid-State Lithium-Metal Batteries

被引:7
作者
Liu, Weijie [1 ]
Jiang, Jianbo [2 ]
Yang, Zhihao [1 ]
Liu, Yang [1 ]
Yang, Zhengfei [1 ]
Bu, Manman [1 ]
Liao, Shuangxiong [1 ]
Wu, Weiying [1 ]
Huang, Tieqi [1 ]
Sang, Shangbin [1 ]
Liu, Hongtao [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
[2] Jishou Univ, Coll Chem & Chem Engn, Jishou 416000, Xiangxi Tujia &, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
composite solid electrolyte; high-entropy oxide; oxygen vacancy; poly(ethylene oxide); lithium metal battery; POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; PEO; MECHANISMS; SOLVATION; ANODE;
D O I
10.1002/asia.202200839
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid polymer electrolytes using poly(ethylene oxide) (PEO) as matrix are mostly applied due to the superior Li+ transfer ability of oxyethyl chain. However, the high crystallinity, low oxidation potential window, and insufficient mechanical strength hinder PEO deployment in solid-state batteries. Here, a novel composite solid electrolyte combined PEO with a lithium-doped high-entropy oxide (Li0.25HEO) ceramic powder is presented, which exhibits excellent properties for solid-state lithium metal battery applications. On one hand, the rich oxygen vacancies of Li0.25HEO surface are favorable to capturing anionic groups (e. g. TFSI-), reinforcing the Li+ dissociation. On the other hand, Li0.25HEO with abundant Lewis acid sites markedly promotes the PEO oxidation potential window. Additionally, the incorporation of Li0.25HEO ceramic powder can effectively inhibit the PEO crystallization and enhance the mechanic strength of the composite electrolyte as well. The assembled solid-state lithium metal battery based on the composite solid electrolyte exhibits high rate capacity and durable cycle performance, showing potential development and application prospects.
引用
收藏
页数:7
相关论文
共 51 条
  • [1] [Anonymous], 2015, ANGEW CHEM, V127, P8055
  • [2] [Anonymous], 2013, ANGEW CHEM
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [5] Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides
    Berardan, D.
    Meena, A. K.
    Franger, S.
    Herrero, C.
    Dragoe, N.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 : 693 - 700
  • [6] Room temperature lithium superionic conductivity in high entropy oxides
    Berardan, D.
    Franger, S.
    Meena, A. K.
    Dragoe, N.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) : 9536 - 9541
  • [7] Colossal dielectric constant in high entropy oxides
    Berardan, David
    Franger, Sylvain
    Dragoe, Diana
    Meena, Arun Kumar
    Dragoe, Nita
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04): : 328 - 333
  • [8] COMPOSITE POLYMER ELECTROLYTES
    CAPUANO, F
    CROCE, F
    SCROSATI, B
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) : 1918 - 1922
  • [9] Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage
    Chen, Chen
    Huang, Ying
    Meng, Zhuoyue
    Xu, Zhipeng
    Liu, Panbo
    Li, Tiehu
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 54 : 482 - 492
  • [10] The Compensation Effect in the Vogel-Tammann-Fulcher (VTF) Equation for Polymer-Based Electrolytes
    Diederichsen, Kyle M.
    Buss, Hilda G.
    McCloskey, Bryan D.
    [J]. MACROMOLECULES, 2017, 50 (10) : 3832 - 3841