Nonrelativistic conformal groups and their dynamical realizations

被引:40
作者
Andrzejewski, K. [1 ]
Gonera, J. [1 ]
Maslanka, P. [1 ]
机构
[1] Univ Lodz, Dept Theoret Phys & Comp Sci, PL-90236 Lodz, Poland
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 06期
关键词
SCHRODINGER INVARIANCE; SYMMETRY; SCALE; GEOMETRY; ALGEBRA;
D O I
10.1103/PhysRevD.86.065009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Nonrelativistic conformal groups, indexed by l = N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing, the coadjoint orbits are classified and described in terms of convenient variables. It is shown that the corresponding dynamical system describes, within Ostrogradski framework, the nonrelativistic particle obeying (N + 1)-th order equation of motion. As a special case, the Schrodinger group and the standard Newton equations are obtained for N = 1 (l = 1/2).
引用
收藏
页数:8
相关论文
共 45 条
[1]   Intertwining operator realization of non-relativistic holography [J].
Aizawa, N. ;
Dobrev, V. K. .
NUCLEAR PHYSICS B, 2010, 828 (03) :581-593
[2]  
[Anonymous], ARXIV11081299
[3]  
[Anonymous], 1884, GESAMMELTE WERKE
[4]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[5]  
Bagchi A., 2010, ARXIV12041951, V08, P004
[6]  
Bagchi A., 2009, ARXIV12041951, V07, P037
[7]  
Blau M., 2010, ARXIV12041951, V7, P069
[8]   The exotic conformal Galilei algebra and nonlinear partial differential equations [J].
Cherniha, Roman ;
Henkel, Malte .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :120-132
[9]   STRUCTURE OF PHENOMENOLOGICAL LAGRANGIANS .I. [J].
COLEMAN, S ;
WESS, J ;
ZUMINO, B .
PHYSICAL REVIEW, 1969, 177 (5P1) :2239-&
[10]   CONFORMAL INVARIANCE IN QUANTUM-MECHANICS [J].
DEALFARO, V ;
FUBINI, S ;
FURLAN, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 34 (04) :569-612