Parallel computation of turbulent flows using moment base lattice Boltzmann method

被引:15
作者
Morinishi, Koji [1 ]
Fukui, Tomohiro [1 ]
机构
[1] Kyoto Inst Technol, Dept Mech & Syst Engn, Kyoto, Japan
关键词
lattice Boltzmann method; turbulent flows; parallel CFD applications; DIRECT NUMERICAL-SIMULATION; CHANNEL FLOW;
D O I
10.1080/10618562.2016.1234044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper describes parallel computing approach for simulating turbulent flows using a moment base lattice Boltzmann method. The distribution functions of the lattice Boltzmann method are expressed by corresponding moments. Choosing proper relaxation times for higher order moments, a minimum numerical dissipation is implicitly added to stabilise the method at high Reynolds numbers. Validation of the method is made by computing free decaying periodic turbulent flows and fully developed turbulent channel flows on a GPU platform. Though the present method requires additional work to calculate the higher order moments, it is shown that additional computational cost is negligible in the GPU computing. The numerical results stably obtained for the turbulent flows are in good agreement with those of a pseudo-spectral method and corresponding DNS database.
引用
收藏
页码:363 / 369
页数:7
相关论文
共 11 条
[1]  
Ansumali S, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056312
[2]   Bulk and shear viscosities in lattice Boltzmann equations [J].
Dellar, PJ .
PHYSICAL REVIEW E, 2001, 64 (03) :11-312031
[3]   Lattice Boltzmann model for the incompressible Navier-Stokes equation [J].
He, XY ;
Luo, LS .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) :927-944
[4]   KOLMOGOROV SIMILARITY IN FREELY DECAYING TURBULENCE [J].
KIDA, S ;
MURAKAMI, Y .
PHYSICS OF FLUIDS, 1987, 30 (07) :2030-2039
[5]   Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method [J].
Krueger, T. ;
Varnik, F. ;
Raabe, D. .
PHYSICAL REVIEW E, 2010, 82 (02)
[6]   Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability [J].
Lallemand, P ;
Luo, LS .
PHYSICAL REVIEW E, 2000, 61 (06) :6546-6562
[7]   Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow [J].
Lammers, P. ;
Beronov, K. N. ;
Volkert, R. ;
Brenner, G. ;
Durst, F. .
COMPUTERS & FLUIDS, 2006, 35 (10) :1137-1153
[8]   Performance of under-resolved two-dimensional incompressible flow simulations, II [J].
Minion, ML ;
Brown, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (02) :734-765
[9]   Direct numerical simulation of turbulent channel flow up to Reτ=590 [J].
Moser, RD ;
Kim, J ;
Mansour, NN .
PHYSICS OF FLUIDS, 1999, 11 (04) :943-945
[10]   A new approach to the lattice Boltzmann method for graphics processing units [J].
Obrecht, Christian ;
Kuznik, Frederic ;
Tourancheau, Bernard ;
Roux, Jean-Jacques .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) :3628-3638