Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures

被引:226
|
作者
Chen, Kuan-Hung [1 ]
Namkoong, Min Ji [2 ]
Goel, Vishwas [1 ]
Yang, Chenglin [2 ]
Kazemiabnavi, Saeed [2 ]
Mortuza, S. M. [1 ]
Kazyak, Eric [2 ]
Mazumder, Jyoti [2 ]
Thornton, Katsuyo [1 ]
Sakamoto, Jeff [1 ,2 ]
Dasgupta, Neil P. [2 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
Fast charging; Batteries; Graphite anodes; Lithium plating; Three-dimensional; ENERGY DENSITY; ELECTRODES; CELLS; DISCHARGE; DESIGN;
D O I
10.1016/j.jpowsour.2020.228475
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enabling high-energy-density lithium-ion batteries that can charge in less than 10 min would accelerate public acceptance of electric vehicles. However, in order to achieve high energy densities, thick electrodes are often used, which suffer from transport limitations. This leads to a tradeoff between power performance and energy density. Here, we demonstrate a laser-patterning process to produce three-dimensional graphite anode architectures. This process results in a highly ordered laser-patterned electrode (HOLE) with arrays of vertical pore channels through the anode thickness that serve as diffusion paths for rapid ionic transport. We apply the HOLE design on industrially-relevant cells (>2 Ah pouch cells) and electrode conditions (>3 mAh/cm(2) graphite anodes) and demonstrate > 97% and >93% capacity retention after 100 cycles of 4C and 6C fast-charge cycling, respectively, compared to 69% and 59% for unpatterned electrodes under the same conditions. After 600 fast-charge cycles, the capacity retention of the HOLE cells is 91% at 4C and 86% at 6C charge rates. Moreover, the HOLE design allows for cells to access >90% of the total cell capacity during fast charging, providing a pathway towards safe fast-charging of high-energy-density batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ateş
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15
  • [2] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Weng, Suting
    Yang, Gaojing
    Zhang, Simeng
    Liu, Xiaozhi
    Zhang, Xiao
    Liu, Zepeng
    Cao, Mengyan
    Ates, Mehmet Nurullah
    Li, Yejing
    Chen, Liquan
    Wang, Zhaoxiang
    Wang, Xuefeng
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [3] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ate?
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15 (11) : 526 - 537
  • [4] Fast-charging graphite anode for lithium-ion batteries: Fundamentals, strategies, and outlooks
    Yan, Xin
    Jiao, Jinying
    Ren, Jingke
    Luo, Wen
    Mai, Liqiang
    APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [5] Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries
    Zhong C.
    Weng S.
    Wang Z.
    Zhan C.
    Wang X.
    Nano Energy, 2023, 117
  • [6] Amorphous Anode Materials for Fast-charging Lithium-ion Batteries
    Vishwanathan, Savithri
    Pandey, Harshit
    Ramakrishna Matte, H. S. S.
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (22)
  • [7] Introducing Ionic Transport Islands in Graphite Anode towards Fast-Charging Lithium-Ion Batteries
    Yu, Honggang
    Zhang, Yidan
    Zhao, Fenggang
    Li, Zhen
    Huang, Yunhui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)
  • [8] A disordered rock salt anode for fast-charging lithium-ion batteries
    Liu, Haodong
    Zhu, Zhuoying
    Yan, Qizhang
    Yu, Sicen
    He, Xin
    Chen, Yan
    Zhang, Rui
    Ma, Lu
    Liu, Tongchao
    Li, Matthew
    Lin, Ruoqian
    Chen, Yiming
    Li, Yejing
    Xing, Xing
    Choi, Yoonjung
    Gao, Lucy
    Cho, Helen Sung-yun
    An, Ke
    Feng, Jun
    Kostecki, Robert
    Amine, Khalil
    Wu, Tianpin
    Lu, Jun
    Xin, Huolin L.
    Ong, Shyue Ping
    Liu, Ping
    NATURE, 2020, 585 (7823) : 63 - +
  • [9] A disordered rock salt anode for fast-charging lithium-ion batteries
    Haodong Liu
    Zhuoying Zhu
    Qizhang Yan
    Sicen Yu
    Xin He
    Yan Chen
    Rui Zhang
    Lu Ma
    Tongchao Liu
    Matthew Li
    Ruoqian Lin
    Yiming Chen
    Yejing Li
    Xing Xing
    Yoonjung Choi
    Lucy Gao
    Helen Sung-yun Cho
    Ke An
    Jun Feng
    Robert Kostecki
    Khalil Amine
    Tianpin Wu
    Jun Lu
    Huolin L. Xin
    Shyue Ping Ong
    Ping Liu
    Nature, 2020, 585 : 63 - 67
  • [10] Fast-Charging Lithium-Ion Batteries Enabled by Magnetically Aligned Electrodes
    Ju, Zhengyu
    Zheng, Tianrui
    Checko, Shane
    Yu, Guihua
    ACS NANO, 2025, 19 (05) : 5688 - 5698