Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments

被引:77
|
作者
Shahab, Mohammed Shadab [1 ]
Rizwanullah, Md [2 ]
Alshehri, Sultan [3 ]
Imam, Syed Sarim [1 ,3 ]
机构
[1] Glocal Univ, Glocal Sch Pharm, Dept Pharmaceut, Saharanpur, India
[2] Jamia Hamdard, Dept Pharmaceut, Sch Pharmaceut Educ & Res, New Delhi 110062, India
[3] King Saud Univ, Coll Pharm, Dept Pharmaceut, Riyadh, Saudi Arabia
关键词
Dorzolamide; Chitosan; Box-Behnken design; In vitro release; HET-CAM; Toxicity; BIODEGRADABLE POLYMERIC NANOPARTICLES; DRUG-DELIVERY; FORMULATION; SURFACE; DESIGN; PHARMACOKINETICS; GLAUCOMA; SYSTEMS;
D O I
10.1016/j.ijbiomac.2020.09.185
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present research work was designed to develop dorzolamide-loaded chitosan-coated polycaprolactone nanoparticles (DRZ-CS-PCL-NPs) for improved ocular delivery. The nanoparticles were prepared by single-step emulsification technique and optimized using the three-factor three-level Box-Behnken design. The optimized DRZ-CS-PCL-NPs prepared with the composition of polycaprolactone (60 mg), chitosan (0.6%) and polyvinyl alcohol (1.5%). The particle size, polydispersity index, zeta potential and encapsulation efficiency of optimized DRZ-CS-PCL-NPs were found to be 192.38 +/- 6.42 nm, 0.18 +/- 0.04,+ 5.21 +/- 1.24mV, and 72.48 +/- 5.62%, respectively. The dependent and independent response variables showed excellent correlation and signifying the rationality of the optimized DRZ-CS-PCL-NPs. The DRZ release from CS-PCL-NPs showed biphasic behaviour with initial burst release for 2 h after that sustained-release up to 12 h of study. The corneal flux experiment showed many fold enhancement in permeation across goat cornea. DRZ-CS-PCL-NPs exhibited 3.7 fold higher mucoadhesive strength compared to the control. Furthermore, the histopathological assessment and HET-CAM study revealed that the DRZ-CS-PCL-NPs were non-irritant and safe for ocular administration. Therefore, from the present study, it can be concluded that the optimized DRZ-CS-PCL-NPs are safe and have the potential for successful ocular delivery and improved therapeutic efficacy. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:2392 / 2404
页数:13
相关论文
共 50 条
  • [31] In vitro appraisals and ex vivo permeation prospect of chitosan nanoparticles designed for schizophrenia to intensify nasal delivery
    Sanjula Annu
    Javed Baboota
    Polymer Bulletin, 2022, 79 : 2263 - 2285
  • [32] Lutein-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Statistical Optimization and Ex Vivo Evaluation
    Shah, Sunny
    Bhanderi, Brijesh
    Soniwala, Moinuddin
    Chavda, Jayant
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2022, 17 (02) : 584 - 598
  • [33] Development of ethosomal gel of ranolazine for improved topical delivery: In vitro and ex vivo evaluation
    Bisht, Deepak
    Verma, Devina
    Mirza, Mohd. Aamir
    Anwer, Md. Khalid
    Iqbal, Zeenat
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 225 : 475 - 481
  • [34] Lutein-Loaded Solid Lipid Nanoparticles for Ocular Delivery: Statistical Optimization and Ex Vivo Evaluation
    Sunny Shah
    Brijesh Bhanderi
    Moinuddin Soniwala
    Jayant Chavda
    Journal of Pharmaceutical Innovation, 2022, 17 : 584 - 598
  • [35] Chitosan nanoparticles as new ocular drug delivery systems:: In vitro stability, in vivo fate, and cellular toxicity (vol 21, pg 803, 2004)
    de Campos, AM
    Diebold, Y
    Carbalho, ELS
    Sáínchez, A
    Alonso, MJ
    PHARMACEUTICAL RESEARCH, 2005, 22 (06) : 1007 - 1007
  • [36] Development of Chitosan-Tripolyphosphate Nanoparticles as Glycopeptide Antibiotic Reservoirs and Ex Vivo Evaluation for Their Potential to Enhance the Corneal Permeation in Ocular Drug Delivery
    Safari, Farhad
    Mirzaeei, Shahla
    Mohammadi, Ghobad
    PHARMACEUTICAL SCIENCES, 2022, 28 (03) : 449 - 458
  • [37] Chitosan based mucoadhesive nanoparticles of ketoconazole for bioavailability enhancement: formulation, optimization, in vitro and ex vivo evaluation
    Modi, Jigar
    Joshi, Garima
    Sawant, Krutika
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2013, 39 (04) : 540 - 547
  • [38] Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo
    Shah, Muhammad Khurshid Alam
    Azad, Abul Kalam
    Nawaz, Asif
    Ullah, Shafi
    Latif, Muhammad Shahid
    Rahman, Habibur
    Alsharif, Khalaf F.
    Alzahrani, Khalid J.
    El-Kott, Attalla F.
    Albrakati, Ashraf
    Abdel-Daim, Mohamed M.
    POLYMERS, 2022, 14 (01)
  • [39] Formulation and optimization of microemulsion based sparfloxacin in-situ gel for ocular delivery: In vitro and ex vivo characterization
    Dhaval, Mori
    Devani, Jatin
    Parmar, Ramesh
    Soniwala, M. M.
    Chavda, Jayant
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 55
  • [40] Bilosomes as Promising Nanovesicular Carriers for Improved Transdermal Delivery: Construction, in vitro Optimization, ex vivo Permeation and in vivo Evaluation
    Ahmed, Sadek
    Kassem, Mohamed Aly
    Sayed, Sinar
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 9783 - 9798