Finite-size scaling at quantum transitions

被引:83
作者
Campostrini, Massimo [1 ,2 ]
Pelissetto, Andrea [3 ,4 ]
Vicari, Ettore [1 ,2 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy
关键词
2-DIMENSIONAL ISING-MODEL; UNIVERSAL AMPLITUDE RATIOS; CONFORMAL-INVARIANCE; XY; RENORMALIZATION; ENTANGLEMENT; ORDER; CHAIN; PERTURBATIONS; TEMPERATURE;
D O I
10.1103/PhysRevB.89.094516
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop the finite-size scaling (FSS) theory at quantum transitions. We consider various boundary conditions, such as open and periodic boundary conditions, and characterize the corrections to the leading FSS behavior. Using renormalization-group (RG) theory, we generalize the classical scaling ansatz to describe FSS in the quantum case, classifying the different sources of scaling corrections. We identify nonanalytic corrections due to irrelevant (bulk and boundary) RG perturbations and analytic contributions due to regular backgrounds and analytic expansions of the nonlinear scaling fields. To check the general predictions, we consider the quantum XY chain in a transverse field. For this model exact or numerically accurate results can be obtained by exploiting its fermionic quadratic representation. We study the FSS of several observables, such as the free energy, the energy differences between low-energy levels, correlation functions of the order parameter, etc., confirming the general predictions in all cases. Moreover, we consider bipartite entanglement entropies, which are characterized by the presence of additional scaling corrections, as predicted by conformal field theory.
引用
收藏
页数:22
相关论文
共 93 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]   RENORMALIZATION GROUP-ANALYSIS OF THE PHASE-TRANSITION IN THE 2D COULOMB GAS, SINE-GORDON THEORY AND XY-MODEL [J].
AMIT, DJ ;
GOLDSCHMIDT, YY ;
GRINSTEIN, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (02) :585-620
[4]  
[Anonymous], 1989, Cambridge Monographs on Mathematical Physics
[5]  
Barber MN., 1983, PHASE TRANSITIONS CR, Vvol 8
[6]   CONFORMAL-INVARIANCE AND PERTURBATIONS IN THE TWO-DIMENSIONAL ISING-MODEL - SURFACE-DEFECTS [J].
BERCHE, B ;
TURBAN, L .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (5-6) :589-607
[7]  
Berezinskii V. L., 1970, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, V59, P907
[8]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[9]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964