From topological to quantum entanglement

被引:19
作者
Melnikov, D. [1 ,2 ]
Mironov, A. [2 ,3 ,4 ]
Mironov, S. [2 ,5 ,6 ,7 ]
Morozov, A. [2 ,4 ]
Morozov, An. [2 ,4 ,6 ]
机构
[1] Univ Fed Rio Grande do Norte, Int Inst Phys, Campus Univ, BR-59078970 Natal, RN, Brazil
[2] Inst Theoret & Expt Phys, B Cheremushkinskaya 25, Moscow 117259, Russia
[3] Lebedev Phys Inst, IE Tamm Theory Dept, Leninsky Pr 53, Moscow 119991, Russia
[4] Inst Informat Transmiss Problems, Bolshoy Karetny Per 19 Bldg 1, Moscow 127051, Russia
[5] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Prosp 7a, Moscow 117312, Russia
[6] Moscow Inst Phys & Technol, Inst Skiy Per 9, Dolgoprudnyi 141701, Russia
[7] Inst Theoret & Math Phys, GSP-1, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Topological Field Theories; Chern-Simons Theories;
D O I
10.1007/JHEP05(2019)116
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Entanglement is a special feature of the quantum world that reflects the existence of subtle, often non-local, correlations between local degrees of freedom. In topological theories such non-local correlations can be given a very intuitive interpretation: quantum entanglement of subsystems means that there are "strings" connecting them. More generally, an entangled state, or similarly, the density matrix of a mixed state, can be represented by cobordisms of topological spaces. Using a formal mathematical definition of TQFT we construct basic examples of entangled states and compute their von Neumann entropy.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
[Anonymous], ARXIV13016214
[2]  
[Anonymous], ARXIV180901197
[3]  
[Anonymous], ARXIV161108047
[4]  
ARAVIND PK, 1997, POTENTIALITY ENTANGL
[5]  
Atiyah M., 1989, Publ. Math. de l'IHES, V68, P175, DOI [DOI 10.1007/BF02698547, 10.1007/BF02698547]
[6]  
Atiyah M., 1990, The Geometry and Physics of Knots
[7]   Entanglement entropy and the colored Jones polynomial [J].
Balasubramanian, Vijay ;
DeCross, Matthew ;
Fliss, Jackson ;
Kar, Arjun ;
Leigh, Robert G. ;
Parrikar, Onkar .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05)
[8]   Multi-boundary entanglement in Chern-Simons theory and link invariants [J].
Balasubramanian, Vijay ;
Fliss, Jackson R. ;
Leigh, Robert G. ;
Parrikar, Onkar .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)
[9]   Black holes, entanglement and random matrices [J].
Balasubramanian, Vijay ;
Berkooz, Micha ;
Ross, Simon F. ;
Simon, Joan .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (18)
[10]  
Camilo G., ARXIV190310609