Blockchain-Based Distributed Federated Learning in Smart Grid

被引:7
|
作者
Antal, Marcel [1 ]
Mihailescu, Vlad [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
energy prediction; federated learning; blockchain; smart grid management; demand response; smart contracts; machine learning; PRIVACY;
D O I
10.3390/math10234499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The participation of prosumers in demand-response programs is essential for the success of demand-side management in renewable-powered energy grids. Unfortunately, the engagement is still low due to concerns related to the privacy of their energy data used in the prediction processes. In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-demand prediction that combines FL with blockchain to provide data privacy and trust features for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes without revealing it to third parties, with only the learned local model weights being shared using a blockchain network. The global federated model is not centralized but distributed and replicated over the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We had proposed smart contracts to deal with the integration of local machine-learning prediction models with the blockchain, defining functions for the model parameters' scaling and reduction of blockchain overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored energy data of several prosumers. The results show only a slight decrease in prediction accuracy in the case of blockchain-based distributed FL with reliable data privacy support compared with the centralized learning solution.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] BCAFL: A Blockchain-Based Framework for Asynchronous Federated Learning Protection
    Yun, Jian
    Lu, Yusheng
    Liu, Xinyu
    ELECTRONICS, 2023, 12 (20)
  • [42] BASS: A Blockchain-Based Asynchronous SignSGD Architecture for Efficient and Secure Federated Learning
    Xu, Chenhao
    Ge, Jiaqi
    Deng, Yao
    Gao, Longxiang
    Zhang, Mengshi
    Li, Yong
    Zhou, Wanlei
    Zheng, Xi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5388 - 5402
  • [43] BlockFed: A High-Performance and Trustworthy Blockchain-Based Federated Learning Framework
    Ning, Rui
    Wang, Chonggang
    Li, Xu
    Gazda, Robert
    Wu, Hongyi
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 892 - 897
  • [44] The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning
    Hu, Shili
    Li, Jiangfeng
    Zhang, Chenxi
    Zhao, Qinpei
    Ye, Wei
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2021), 2021, : 566 - 571
  • [45] Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning
    Wang, Zhilin
    Hu, Qin
    Li, Ruinian
    Xu, Minghui
    Xiong, Zehui
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (05) : 1536 - 1547
  • [46] Incentive Mechanism of Blockchain-Based Reverse Auction for Federated Learning
    Cui, Bo
    Dang, Li
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1043 - 1048
  • [47] Blockchain-Based Gradient Inversion and Poisoning Defense for Federated Learning
    Wang, Minghao
    Zhu, Tianqing
    Zuo, Xuhan
    Ye, Dayong
    Yu, Shui
    Zhou, Wanlei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 15667 - 15681
  • [48] Blockchain-Based Decentralized and Lightweight Anonymous Authentication for Federated Learning
    Fan, Mochan
    Zhang, Zhipeng
    Li, Zonghang
    Sun, Gang
    Yu, Hongfang
    Guizani, Mohsen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (09) : 12075 - 12086
  • [49] DSFL: a blockchain-based data sharing and federated learning framework
    Niu, Haiqian
    Zhang, Xing
    Chu, Zhiguang
    Shi, Wei
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [50] Blockchain-Based Personalized Federated Learning for Internet of Medical Things
    Lian, Zhuotao
    Wang, Weizheng
    Han, Zhaoyang
    Su, Chunhua
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2023, 8 (04): : 694 - 702